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A B S T R A C T

Recent researches on sensor based human activity recognition (HAR) are mostly devoted to designing various
network architectures to enhance their feature representation capacity for raw sensor data. In this paper, we
focus on strengthening the vanilla convolution without adjusting the model architectures in HAR scenario.
Inspired by the idea of grouped convolution, we propose a novel heterogeneous convolution for activity
recognition task, where all filters within a specific convolutional layer are separated into two uneven groups.
Specifically, the sensor input is down-sampled into a low-dimensional embedding, which is then convolved by
one filter group to recalibrate normal filters within the other group. The two filter groups can complement
each other, which is very beneficial for augmenting the receptive field of sensor signals for HAR task. Extensive
experiments are conducted on several benchmark HAR datasets, which consists of OPPORTUNITY, PAMAP2,
UCI-HAR, USC-HAD as well as the Weakly Labeled HAR dataset. The results show that the baseline models
can be significantly improved. Our heterogeneous convolution is simple and can easily be integrated into
standard convolutional layers without increasing extra parameters and computational overhead. Finally, the
actual operation of heterogeneous convolution is evaluated on an embedded Raspberry Pi platform.
1. Introduction

With the rapid technical development of Internet of Things and
sensing technology, various motion sensors can be embedded into
smart devices such as phones and watches to record people’s motion
information. Due to obvious advantages, e.g., lower cost, smaller size,
and flexible deployment, smart sensing devices embedded with inertial
measurement units (IMUs) such as accelerometers and gyroscopes pro-
vide a better alternative to unobtrusively perform activity recognition
task (Nweke et al., 2018; Ronao & Cho, 2016; Wang, Cang et al.,
2019). The recognizing systems can monitor and analyze people’s
behaviors with sensory time series to improve the quality of their daily
life. During the past decade, sensor based human activity recognition
(HAR) (Dang et al., 2020; Wang, He et al., 2021) has gained a lot
of attention due to its rapid growth in a large variety of application
domains such as interactive games, smart homes, and health care. For
example, HAR can offer a smart medical assistance by identifying the
action being undertaken by a patient. Monitoring activities of daily
living (ADLs) of patients with chronic diseases such as obesity and
cardiovascular has played a vital role in smart healthcare (Ogbuabor
& La, 2018; Wang, Cang et al., 2019). According to the report from
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World Health Organization (WHO), the major cause of obesity can be
attributed to the lack of physical exercise. Automatic activity recog-
nition systems are able to assist the physicians to effectively monitor
and analyze daily living habits of those patients, hence offering proper
diagnosis and treatment. In smart home scenario (Feng et al., 2017),
activity recognition also can be applied in many surveillance tasks such
as fall detection in the elderly. Due to the serious problem of aging
population, physical inactivity of the elderly people will not only affect
their living quality, but also bring financial burden to the societies
and individuals. Recent years have witnessed the success of assistive
HAR systems using sensors, Internet of Healthcare Things (Zhou et al.,
2020), and machine learning techniques, which can build long-term
and elderly-friendly environment. Activity recognition enables people
to have a real-time interaction with game devices (Lara & Labrador,
2012), which leads to an immersive entertainment experience. Due
to the enrichment of sensing data, HAR has become an active re-
search topic in ubiquitous computing scenario, which may provide
reliable support for the development of various human-centric services
or applications.
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Various machine learning algorithms such as Naive Bayes, K-nearest
neighbors, and support vector machine (Bulling et al., 2014) have been
extensively explored in HAR. These traditional machine learning tech-
niques for sensor-based HAR mainly focused on the design of shallow
hand-crafted features, which are domain-specific or task-dependent.
Recent breakthroughs in deep learning technique that can automati-
cally extract relevant representative features have significantly pushed
the latest state-of-the-art in HAR. For example, Yang et al. (2015)
proposed a deep convolutional neural network (CNN) to handle HAR
problem with multichannel time series, where the non-handcrafted fea-
tures learned by the CNN are task-dependent. Hammerla et al. (2016)
detailed various deep, convolutional, and recurrent network architec-
tures across three benchmark HAR datasets that contain motion data
recorded by wearable sensors. The current research focus in HAR is un-
dergoing a transition from feature engineering to network engineering.
That is to say, how to adjust the network architectures to be optimal for
generating better feature representations? Accordingly, more research
efforts are devoted to hand-designed network architectures such as
CNNs (Albawi et al., 2017; Huang et al., 2021; Kalchbrenner et al.,
2014), residual networks (ResNets) (He et al., 2016) or their diverse
variants, which inevitably requires too much human labor.

Actually, it is very difficult for one practitioner to determine what
are the most optimal model architectures for their HAR applications. In
the paper, in order to avoid tuning complex network architectures, we
propose a novel heterogeneous convolutional network, which aims to
strengthen the basic convolution to produce discriminative features in
HAR scenario. Similar to grouped convolution (Chollet, 2017; Howard
et al., 2017; Krizhevsky et al., 2012; Zhang et al., 2018), the core idea
behind the method is to divide the filters of a specific convolutional
layer into two groups but unevenly. The filters within each group are
applied to a sensor input in a heterogeneous way. To be specific, the
sensor input is first transformed into a low-dimensional embedding
via down-sampling operation. The low-dimensional embeddings are
processed by one filter group, which are then utilized to recalibrate
normal filters within the other group. The heterogeneous convolutions
can complement each other, which is very beneficial to augment the
receptive field of sensor signals for HAR application. Let us briefly com-
ment on a number of closely related background details, which strongly
motivate our research in this paper. Generally speaking, standard CNNs
contain three kinds of layers: convolution layer, pooling layer, and fully
connected layer, which may be stacked hierarchically to form a deep
classifier for activity recognition. Actually, the convolution operations
with fixed-size kernel can be directly implemented along temporal
dimension of sensor signals to extract discriminative activity features.
Fig. 1 illustrates the waveforms of acceleration signals from the ‘walk-
ing’ and ‘running’ activities. Considering different activity speeds at
‘walking’/‘running’, they will be more discriminative at different time
scales. Conventional convolution usually has a fixed kernel size, which
can only detect the signal fluctuations at a fixed time scale. To fill this
gap, Lee et al. (2017) ensembled multiple CNN architectures that have
different kernel sizes to extract features at multiple time scales. Because
this multi-kernel CNN architecture will require expensive computation,
it is very impractical for real-time or lightweight HAR by deep models
on wearable and mobile devices. Furthermore, when a larger time
scale is desirable, a pooling operation will be inserted between two
convolutional layers, which inevitably causes information loss because
of the subsampling process from time series. To handle this issue, Xi
et al. (2018) adopted a dilated convolution method to time series,
which utilizes dilated kernels rather than standard kernels to expand
the receptive field (i.e., time length) without information loss. The
dilated convolution nearly requires no extra computation, because it
only injects empty elements into the standard kernel. But the time scale
that an individual dilated convolution may explore is inadequate as
well. The varying time scale is a critical concern in ubiquitous HAR
scenario. To fill the gap, different from previous works, we propose a
heterogeneous two-stream CNN architecture, which may handle differ-
ent time scales for activity recognition. The main contributions of the
2

proposed method are three-fold:
1. In order to avoid the shortcoming of fixed time scale in normal
convolution, we for the first time propose a new heterogeneous
two-stream CNN architecture to encode contextual information
of sensor time series from different receptive field sizes, which
can generate more discriminative activity features at different
time scales for activity recognition.

2. The proposed two-stream convolution is a Plug-and-Play block,
which can be easily integrated into the existing deep models for
HAR without increasing any extra memory and computation cost
or changing other network hyperparameters.

3. We conduct extensive experiments on several public HAR
datasets consisting of OPPORTUNITY, PAMAP2, UCI-HAR, USC-
HAD as well as the Weakly Labeled HAR dataset to evaluate
how varying such heterogeneous convolutions affect the overall
recognition performance. Ablation studies verify that our het-
erogeneous two-stream convolutions with different subsampling
rates are able to better extract activity features at different time
scales. The actual performance is evaluated via running the HAR
systems on an embedded platform.

The rest of this paper is organized as follows. In Section 2, recent
related deep learning and HAR researches are reviewed. The overview
of the proposed method is presented in Section 3. We perform extensive
experiments on various public HAR datasets in Section 4. Discussion is
conducted in Section 5. Finally, a conclusion is made.

2. Related work

During recent years, deep learning (LeCun et al., 2015) has made re-
markable advances in the field of HAR. At the earliest time, Zeng et al.
(2014) presented a CNN-based feature extraction approach to capture
the scale invariance and local dependency characteristics of sensor time
series for HAR task, which outperforms traditional hand-crafted feature
approaches. In order to handle HAR using 1D time-series signal, Ronao
and Cho (2016) proposed a deep CNN, which can automatically ex-
tract the inherent temporal local dependency, scale invariance, and
hierarchical features of activities. Ignatov (2018) exploited CNNs for
local feature extraction together with simple hand-designed statistical
features, which can preserve contextual information about the global
form of time series. In multimodal HAR scenario, Chen and Xue (2015)
proposed a sophisticated CNN, which contains three convolutional
layers with 18, 36, 24 filters followed by 2 × 1 max-pooling layers
each respectively. In order to extract the association between two
adjoining pairs of sensor axes, they adopted a 12 × 2 filter at the first
layer. Jiang and Yin (2015) proposed a novel CNN with two layers,
in which they adopt filters of 5 × 5 followed by 4 × 4 and 2 × 2
average-pooling layers, respectively. In particular, raw sensor signals
are transformed into a two-dimensional activity image for classifica-
tion. Ma et al. (2019) proposed a new deep model called AttnSense
for multimodal HAR tasks, which combines attention module with a
CNN and a Gated Recurrent Units (GRU) network to highlight more
important sensor modalities or time intervals. The attention-based deep
model can improve the interpretability of deep model behaviors. Using
self-supervised idea, Haresamudram et al. (2021) presented a new
Contrastive Predictive Coding (CPC) approach for HAR, which is able to
preserve high recognition performance when there is only a very small
number of labeled activity samples. Because it is very laborious for hu-
man to annotate activity data from a long sensor sequence, this method
demonstrates its practical use due to the scarcity of annotation data. To
protect user-sensitive information, Xiao et al. (2021) proposed a deep
learning-based federated learning system, which is able to maintain
satisfactory recognition accuracy and meanwhile preventing privacy
leakage. Luo et al. (2021) introduced a binarized convolutional network
for realtime HAR, in which the dilated convolution is used to enlarge
receptive field and improve its potential capturing capability for time

series. This work will effectively reduce latency in resource-constrained
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Fig. 1. The comparison between normal convolution and heterogeneous convolution scaling for different activities.
mobile devices, which may better support computation-intensive deep
models in ubiquitous HAR scenario. Although deep learning has a great
potential to automatically extract effective features from raw sensor
signals, there is still no clear consensus on what is the optimal network
architecture across a large variety of HAR tasks. Various hand-crafted
network designs in HAR field require too much human labors.

During the past decade, deep network architecture design has made
considerable advances in the field of computer vision. As an earliest
work, Krizhevsky et al. (2012) presented AlexNet, which produces
significant performance improvement by sequentially stacking a spe-
cific number of convolutional layers. Simonyan and Zisserman (2014)
further introduced VGGNet, which stacks more layers with smaller
filters compared with AlexNet. In order to tackle the gradient vanishing
problem, He et al. (2016) proposed ResNet, where an identity map is
used as skip connection to generate extremely deep networks. Szegedy
et al. (2015) designed GoogLeNet by using carefully designed Inception
modules, which contains multiple parallel paths of sets of specialized
filters to extract features. However, it is hard to train such deep
neural networks in a resource-constrained platform. Thus, the idea
of grouped convolution has been firstly proposed to divide the num-
ber of channels in half, which can drastically reduce the number of
computations to obtain output feature maps. Liu et al. (2020) pro-
posed an efficient self-calibrated convolution, which performs all the
convolutions over the input in an uneven way. However, the idea of
grouped convolution is rarely to be seen in HAR scenario. Different
from all above-mentioned HAR researches that focus on adjusting hand-
designed network architectures, we first propose to use the idea of
grouped convolution to design powerful feature extractor for HAR,
which can augment the basic convolutional module to generate more
rich feature representations.

3. Model

In this section, we will explore the idea of grouped convolution,
and present the proposed framework of heterogeneous convolution for
our activity recognition challenge. Different from imagery data (He
et al., 2016), raw sensor signals (Zeng et al., 2018) need to be first
preprocessed, which refers to noise removal (Rudin et al., 1992),
signal segmentation, and resampling processes. In particular, it is a
crucial step to segment sensor time series for the subsequent activity
recognition procedures. Because the sliding window approach can be
easily implemented and require no preprocessing, it is ideally suitable
for real-time HAR applications, where the sensor time series can be
divided into continuous fixed-length samples with an overlap rate. The
heterogeneous sensor values are then normalized into zero mean and
unit variance by subtracting the mean and dividing by the standard
variance.

Without loss of generality, a normal convolutional layer is com-
posed of a set of filters 𝐾 =

[

𝑘1, 𝑘2,… , 𝑘�̂�
]

, in which 𝑘𝑖 denotes the 𝑖th
filter. By standard convolution, the sensor input 𝑋 =

[

𝑥 , 𝑥 ,… , 𝑥
]

can
3

1 2 𝐶
be transformed into an output 𝑌 =
[

𝑦1, 𝑦2,… , 𝑦�̂�
]

, where �̂� denote the
number of filters. For notational convenience, omitting the filter size
and bias term, we can formulate the output feature map at channel 𝑖
as:

𝑦𝑖 = 𝑘𝑖 ∗ 𝑋 =
𝐶
∑

𝑗=1
𝑘𝑗𝑖 ∗ 𝑥𝑗 (1)

in which ‘*’ denotes convolutional operation. As a result, each output
feature map can be computed by the summation across all channels.
Repeating the Eq. (1) �̂� times, we are able to obtain the final output
𝑌 (Kalchbrenner et al., 2014; Kim, 2017; Liu et al., 2020). Actually,
the receptive field within a specific convolution layer is mainly prede-
termined by the fixed kernel size. The small filter is computationally
efficient, but at the same time it is hard to capture long-range contex-
tual information, which may lead to less discriminative feature maps.
In order to avoid the above shortcoming, based on the idea of grouped
convolution, we use heterogeneous convolution to strengthen vanilla
convolution for improving the performance of HAR.

For grouped convolution (Chollet, 2017; Howard et al., 2017;
Krizhevsky et al., 2012), all filters are divided into parallel branches,
which are performed in a homogeneous way. The outputs from each
branch are then concatenated to produce the final output. Based on the
idea of grouped convolution, without loss of generality, the proposed
approach divides all convolutional filters into two parts, yet in a
heterogeneous way, each part is unevenly treated which is in charge of
specific functionality. The heterogeneous convolution can generate dif-
ferent receptive fields, which leads to a better understanding of global
contextual information. Fig. 2 shows the flowchart to recognize human
activities. For the sake of simplicity, we assume that there is no change
in the number of channels during the whole process, 𝑖.𝑒. , 𝐶 = �̂�. Given
a group of filter sets 𝐾 with shape (𝐶,𝐶, 𝑇 , 𝑆) where 𝑇 and 𝑆 are height
and width of the filters respectively, we first divide it into four parts,
e.g., 𝐾1, 𝐾2, 𝐾3, 𝐾4 as illustrated in Fig. 2. Here the channel number 𝐶 is
divided by 2. Different from grouped convolution, each part with shape
(𝐶2 ,

𝐶
2 , 𝑇 , 𝑆) has its specific functionality. Based on above four parts of

filters, the input 𝑋 is divided into two parts 𝑋1, 𝑋2, each of which with
shape (𝐶2 , 𝑇 , 𝑆) is then sent into a special branch, which can aggregate
contextual information at different scales. To be specific, there are two
different scale spaces: one is an original scale space that shares the same
resolution with original sensor input; the other is a down-sampling
small-scale space, which can be easily obtained by pooling (Bruckstein
et al., 2003; Sun et al., 2017) operation. We detail how to perform the
heterogeneous convolution as follows:

For the former, because we only perform down-sampling on sensor
time series, both the pooling size and stride in small-scale space are
(𝑟, 1), which can be formulated as:

𝑃1 = 𝑃𝑜𝑜𝑙𝑟(𝑋1) (2)

Based on 𝐾1, the feature transformation is performed on 𝑃1 :

𝑋′ = 𝑈𝑝(𝐹 (𝑃 )) = 𝑈𝑝(𝑃 ∗ 𝐾 ) (3)
1 1 1 1 1
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Fig. 2. The overview of heterogeneous convolution.
where the bilinear interpolation (Gribbon & Bailey, 2004; Kirkland,
2010; Mastyło, 2013) operator Up(⋅) is utilized to resize the feature
maps of small-scale space to the original resolution. The operation in
the original scale still can be formulated as follows:

𝑋′
2 = 𝐹2(𝑋1) = 𝑋1 ∗ 𝐾2 (4)

Because of the pooling operation, the receptive field of 𝐾1 is 𝑟 times
larger than of 𝐾2’s, where 𝑟 is a hype-parameter of pooling operation.
Therefore, the small-scale space can guide the feature transformation
process in the original one (Hu, Shen et al., 2018; Huang et al., 2017;
Liu et al., 2020; Woo et al., 2018). We use 𝑋′

1 residuals to recalibrate
the weights for guiding, which could be beneficial:

𝑌 ′
1 = 𝑋′

2 ⋅ 𝜎(𝑋1′) (5)

where 𝜎 denotes sigmoid activation (Sibi et al., 2013) and ‘⋅’ is element-
wise operator. The output 𝑌1 in this branch can be written as :

𝑌1 = 𝐹3(𝑌 ′
1 ) = 𝑌 ′

1 ∗ 𝐾3 (6)

All in all, the process in the first branch is presented in Eqs. (2) to (6).
For the latter, this process in the second branch can be given as:

𝑌2 = 𝐹4(𝑋2) = 𝑋2 ∗ 𝐾4 (7)

which is normal convolution to preserve original contextual informa-
tion of sensor time series. Finally, we concatenate both the intermediate
outputs 𝑌1, 𝑌2 to obtain final desired output 𝑌 .

4. Experiments

We divide this section into three parts. In part one, we detail the five
HAR datasets used, which consist of OPPORTUNITY (Chavarriaga et al.,
2013), PAMAP2 (Reiss & Stricker, 2012), UCI-HAR (Anguita et al.,
2012), USC-HAD (Zhang & Sawchuk, 2012) and our Weakly Labeled
HAR dataset (Wang et al., 2019b). In part two, the data preprocessing
and network architectures of our baselines are presented. In part three,
the effectiveness and efficiency of the proposed method are evaluated
on several benchmark HAR datasets. All the models are trained by
an Adam optimizer to minimize the cross-entropy loss function. Our
algorithm is run by using the deep learning framework PyTorch with
CPU Intel i7 6850k, 64 GB memory, and an NVIDIA 3090 GPU with
24 GB video memory.
4

4.1. Dataset description

4.1.1. OPPORTUNITY dataset (Chavarriaga et al., 2013)
Daniel et al. from the University of Sussex built this HAR dataset

in a sensor-rich environment, which consists of 15 wireless and wired
networked sensor systems. The sensor system has 72 sensors of 10
modalities within it. In a breakfast scenario, 17 kinds of activities were
recorded from four subjects. On body, each subject was equipped with
wearable sensor nodes for inferring human activities. The sampling
frequency was set to 30 Hz.

4.1.2. PAMAP2 dataset (Reiss & Stricker, 2012)
This PAMAP (Physical Activity Monitoring for Aging People) dataset

was built by researchers from the Department of Augmented Vision
German Research Center of Artificial Intelligence. Nine subjects with
8 males and 1 female took part in the data collection, whose ages
range from 27 to 30 years old. All subjects wore 3 Inertial Measurement
Units (IMUs) and a heart-rate monitor, which were attached to the
dominant’s arm, ankle, and chest respectively. This dataset contains 18
kinds of activities, which consist of ‘walking’, ‘cycling’, ‘rope jumping’,
etc. The sampling rate was set to 100 Hz. The PAMAP2 dataset is
publicly available.

4.1.3. UCI-HAR dataset (Anguita et al., 2012)
This dataset was built by the researchers from the University of

California Irvine for evaluating various machine learning algorithms on
HAR task. The thirty subjects with their ages between 19 and 48 years
took part in the data collection. All subjects were equipped with
Samsung Galaxy S2 placed on their waists. Under a supervised scenario,
each subject performed the six types of activities of daily living, which
consists of ‘walking’, ‘standing’, ‘lying’, ‘walking upstairs’, and ‘walking
downstairs’. The sensor signals were recorded at a frequency of 50 Hz
by triaxial angular velocity and acceleration sensors.

4.1.4. USC-HAD dataset (Zhang & Sawchuk, 2012)
This dataset was designed as a benchmark for comparing various

algorithms particularly in healthcare scenario, which contains 12 kinds
of activities such as ‘walking forward’, ‘walking left’, ‘walking right’,
‘sleeping’, ‘sitting’, performed by 7 males and 7 females. The 14 par-
ticipants ranged in age from 21 to 49 and height between 160 cm
and 185 cm. They recorded sensor signals by a sensing platform called
MotionNode, where a triaxial accelerometer, a triaxial magnetometer,
and a triaxial gyroscope are incorporated. All the participants wore the
MotionNode on their front right hip for 5 trials. It took an average of
6 h for each subject to complete the entire dataset.
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Fig. 3. Data collection process. These images from left to right are ‘going upstairs’, ‘going downstairs’, ‘jogging’, ‘jumping’ and ‘walking’.
Fig. 4. The user interface of HascLogger.
Table 1
Data statistics of Weakly Labeled HAR dataset.

Activity Label Number

Go upstairs 0 4270
Go downstairs 1 9605
Jumping 2 3234
Jogging 3 4632
Total – 21 741

4.1.5. Weakly labeled HAR dataset (Wang et al., 2019b)
This Weakly Labeled HAR dataset was collected by 10 volunteers,

who used a triaxial accelerometer embedded in iPhone 7 placed in their
right trouser pocket. Fig. 3 illustrates each volunteer’s data collection
process. Data collection was done through an application software
called HascLogger (Kawaguchi et al., 2011), which is able to collect
motion data by iPhone. The user interface of the application is shown
in Fig. 4. Using this software, we can setup the following configurations
such as measurement data (i.e., acceleration), sampling frequency, and
the time of measurement. Activity data can be collected in real-time
at a sampling rate of 50HZ. In a supervised scenario, each volunteer
performs five types of daily activities consists of ‘walking’, ‘jumping’,
‘jogging’, ‘going upstairs’ and ‘going downstairs’, where the activity
walking is seen as the background activity, while the other four ac-
tivities are the recognized target activities. Each specific activity was
repeated four times. A fixed-length window of 2048 is slid over sensor
readings, which corresponds to 40.96 s. As a result, it produces overall
21,741 activity samples. The statistics of different types of activity sam-
ples are shown in Table 1. Due to inexact segmentation, each weakly
labeled 2048-length activity sample may contain one or multiple target
activities, as well as background activities.

4.2. Data preprocessing and network architecture description

The details of data preprocessing such as the sampling rate, window
size, and overlapping rate are illustrated in Table 2. In the experiments,
each dataset is divided into three parts, in which the training set,
validation set, and test set account for 70%, 10%, and 20% of the
total samples respectively. The other hyper-parameters such as training
epochs, batch size, and learning rate are also listed in Table 2.
5

Both baseline backbone networks are used to evaluate the effec-
tiveness of the heterogeneous convolution. One contains three convo-
lutional layers and a fully connected layer, where batch normalization
and the non-linear activation ReLU follow each convolution and max-
pooling performs down-sampling before the final fully connected layer.
The heterogeneous convolution is used to replace standard convolution
within each intermediate convolutional layer as shown in Table 3. The
other is residual network with three residual blocks, each of which
includes two convolution layers, and a fully connected layer is inserted
at the end to output classification. The network architecture of the
ResNet is shown in Table 4.

4.3. Heterogeneous convolution VS vanilla convolution

4.3.1. Performance on OPPORTUNITY dataset
Fig. 5 shows the performance improvements of both baselines

caused by the heterogeneous convolution. The classification perfor-
mance, the number of parameters and FLOPs are presented for quan-
titative comparison. As can be seen from Table 5, the baseline CNN
achieves an F1 score of 90.19%, while the heterogeneous convolution
surpasses it by 0.81% with smaller FLOPs and almost the same number
of parameters. Similarly, the heterogeneous ResNet could provide an
improvement of F1 score by 0.45% over the corresponding baseline.
Moreover, we compare the proposed method and the recent state-
of-the-art approaches on OPPORTUNITY dataset. Table 5 shows that
our method significantly surpasses (Kim, 2020)’s interpretable CNN
by 4.15% in terms of the F1 score. The proposed heterogeneous
convolution is superior to Hammerla et al. (2016) and Hu, Chen et al.
(2018)’s results by 2.15% and 2.4% respectively. The performance of
our heterogeneous convolution is very close to Ordóñez and Roggen
(2016)’s 91.7% which uses DeepConvLSTM, but our method only uses
CNN alone that requires no LSTM module.

4.3.2. Performance on PAMAP2 dataset
Fig. 6 compares the classification performance of both baselines

with/without heterogeneous convolution. The evaluations are also per-
formed according to FLOPs and the number of parameters. It is clear
that the heterogeneous convolution consistently boosts classification
performance under two different settings. Especially, for CNN and



Expert Systems With Applications 198 (2022) 116764C. Han et al.
Table 2
Summary of setup for datasets.

Dataset Setting

Numbers of activities Frequencies of sampling (Hz) Sizes of windows Overlap Epoch Batch size Learning rate

OPPORTUNITY 18 30 30 50% 200 512 1e−4
PAMAP2 12 100 171 78% 200 512 5e−4
UCI-HAR 6 50 128 50% 200 256 5e−4
USC-HAD 12 100 512 50% 200 256 1e−4
Weakly Labeled HAR 4 50 2048 50% 200 256 3e−4
Table 3
Architecture of CNN with heterogeneous convolution(HC).

Structrue Dataset

OPPORTUNITY PAMAP2 UCI-HAR USC-HAD Weakly Labeled HAR

Layer1 3 × 3,S = 2,64 6 × 1,S = (3,1),64 6 × 1,S = (3,1),64 6 × 1,S = (3,1),64 6 × 1,S = (3,1),128
Layer2 3 × 3,S = 1,64 3 × 1,S = 1,64 3 × 1,S = 1,64 5 × 1,S = 1,64 3 × 1,S = 1,128
Layer3 3 × 3,S = 2,128 6 × 1,S = (3,1),128 6 × 1,S = (3,1),128 6 × 1,S = (3,1),128 6 × 1,S = (3,1),256
MaxPool – – – 6 × 1 6 × 1

Fully connected layer
Table 4
Architecture of ResNet with heterogeneous convolution(HC).

Structrue Dataset

OPPORTUNITY PAMPA2 UCI-HAR USC-HAD Weakly labeled HAR

Block1
[

3 × 3, 64
HC, 64

] [

6 × 1, 64
HC, 64

] [

6 × 1, 64
HC, 64

] [

6 × 1, 64
HC, 64

] [

6 × 1, 64
HC, 64

]

Block2
[

3 × 3, 128
HC, 128

] [

6 × 1, 128
HC, 128

] [

6 × 1, 128
HC, 128

] [

6 × 1, 128
HC, 128

] [

6 × 1, 128
HC, 128

]

Block3
[

3 × 3, 256
3 × 3, 256

] [

6 × 1, 256
3 × 1, 256

] [

6 × 1, 256
3 × 1, 256

] [

6 × 1, 256
3 × 1, 256

] [

6 × 1, 256
HC,256

]

MaxPool 4 × 3 – – 6 × 1 6 × 1

Fully connected layer
Fig. 5. F1 score on OPPORTUNITY dataset.

residual network, the models with heterogeneous convolution out-
perform the counterparts by a significant margin, which produce an
accuracy improvement of 1.55% and 1.37% respectively. As shown
in Table 5, the proposed method has almost the same parameters
and fewer FLOPs when compared with both baselines. Compared with
recent state-of-the-art methods on PAMAP2 dataset, the heterogeneous
convolution method significantly surpasses (Ma et al., 2019) and Zeng
et al. (2018)’s methods using attention mechanism by 3.67% and 3.01%
respectively. It is significantly superior to Chen et al. (2019)’s method
that uses a multi-agent spatial–temporal attention model by 2.64% as
well. Especially, our method performs better than recent (Xia et al.,
6

Fig. 6. Accuracy on PAMAP2 dataset.

2021)’s method using a multiple-level domain adaptive learning model
by 0.92%.

4.3.3. Performance on UCI-HAR dataset
We use the experiment settings listed in Table 2 to train our models.

Results are shown in Fig. 7. It is clear that the proposed heterogeneous
models outperform both baselines by 0.54% and 0.85% respectively,
especially under almost the same complexity levels. Table 5 also com-
pares our model with other state-of-the-art networks. It can be seen that
the heterogeneous two-stream CNN performs better consistently, which
surpasses (Ronao & Cho, 2016)’s method using standard convolution
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Fig. 7. Accuracy on UCI-HAR dataset.

by 1.26%. Our method is significantly superior to Dong et al. (2021)’s
method using hesitant fuzzy belief framework and Khan and Ahmad
(2021)’s method using multi-head self-attention mechanism by 1.6%
and 1.61% respectively. The heterogeneous CNN also provides a 0.64%
performance gain over (Ignatov, 2018)’s result, which uses CNN for ac-
tivity feature extraction together with handcrafted statistical features.
We believe this is because the heterogeneous convolution can capture
contextual information at different time scales, which is very beneficial
for recognizing human activities from sensory data.

4.3.4. Performance on USC-HAD dataset
The detailed classification results for recognition on USC-HAD

dataset are illustrated in Table 5. As one can see, our model obtains
an accuracy of 90.67% and 93.49% in both cases, outperforming the
baselines by 0.3% and 1.25%. Performance analysis shows that the
heterogeneous model can lead to considerable improvements without
increasing computational overhead. Recently, Kwon et al. (2018) have
shown that temporal structure can be injected to distribution-based
features of sensory data, which is able to effectively improve recog-
nition performance in standard sliding window-based HAR chain. The
heterogeneous two-stream CNN is obviously superior to their method
by 7.01%. Moreover, our method provides a 1.79% performance gain
compared with Bi et al. (2020)’s method that uses dynamic active
learning. It also leads to an accuracy improvement of 2.42% over (Li
et al., 2021)’s method that using federated representation learning
framework. Comparing with Haresamudram et al. (2020)’s method
which uses mask reconstruction based self-supervision, the hetero-
geneous convolution shows an accuracy improvement of 2.24% (see
Fig. 8).

4.3.5. Performance on Weakly Labeled HAR dataset
Fig. 9 shows that the heterogeneous convolution can outperform

both baselines in the weakly supervised task, which is able to consis-
tently produce higher classification accuracies. Results from Table 5,
it can be clearly observed that the accuracies of two baselines are
90.51% and 92.28% respectively, while our method surpasses them by
0.86% and 1.52% with smaller FLOPs. Benefitting from larger recep-
tive field, the heterogeneous two-stream convolution shows a better
feature extraction capability in weakly supervised activity recognition,
which significantly surpasses (Wang et al., 2019b)’s method using soft
attention mechanism and Gao et al. (2021)’s method using selective
kernel convolution by 3.76% and 0.95% respectively. The experiment
results verify that our method can not only be suitable for traditional
supervised learning tasks, but also perform well on Weakly Labeled
HAR dataset.
7

Fig. 8. Accuracy on USC-HAD dataset.

Fig. 9. Accuracy on Weakly Labeled HAR dataset.

5. Discussion

In this section, we perform extensive ablation experiments to an-
alyze the effect of the heterogeneous convolution by changing the
down-sampling pooling and its hyper-parameter 𝑟. In order to better
understand what the advantage of the proposed model is, we visually
show the influence of down-sampling operation on the Weakly Labeled
HAR dataset. Moreover, we provide visualized analysis to the channel
weights on PAMAP2 dataset, which can be utilized to evaluate the
influence of different sensor modalities placed on different locations
of human body. Finally, we evaluate the actual-time operation of the
proposed model in an embedded system for efficient consideration.

5.1. The optimal down-sampling rate

As indicated in Section 3, we introduce the down-sampling opera-
tion to realize heterogeneous convolution within one branch, which has
been proven very effective for improving vanilla convolution. In this
part, we continue to explore how the down-sampling rate 𝑟 in the het-
erogeneous convolution influences the recognition performance. Fig. 10
shows the classification performance with various down-sampling rates
used in the heterogeneous convolution. For each dataset, we perform
10 runs to calculate their mean value and standard deviation. As can
be seen from Fig. 10, on OPPORTUNITY dataset, 𝑟 = 3 has almost the
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Table 5
Accuracy&Parameters&FLOPs of models on various datasets.

Model Dataset

OPPORTUNITY PAMAP2 UCI-HAR USC-HAD Weakly labeled HAR

CNN 90.19%*&1.05M&99M 89.44%&1.17M&66M 95.65%&0.15M&11M 90.37%&0.15M&39M 90.51%&0.36M&239M
CNN+HC 91%*&1.05M&88M 90.99%&1.17M&61M 96.19%&0.15M&10M 90.67%&0.15M&35M 91.37%&0.36M&219M

ResNet 91.1%*&1.55M&327M 91.6%&1.37M&257M 96.16%&0.41M&44M 92.24%&0.42M&128M 92.28%&0.79M&263M
ResNet+HC 91.55%*&1.55M&306M 92.97%&1.37M&245M 97.01%&0.42M&42M 93.49%&0.42M&123M 93.8%&0.79M&243M

89.4%* (Hammerla et al., 2016) 89.30% (Ma et al., 2019) 95.41% (Dong et al., 2021) 91.25% (Haresamudram et al., 2020) 90.04% (Wang et al., 2019b)
Others’ 91.7%* (Ordóñez & Roggen, 2016) 89.96% (Zeng et al., 2018) 96.37% (Ignatov, 2018) 91.7% (Bi et al., 2020) 92.85% (Gao et al., 2021)
Results 89.15%* (Hu, Chen et al., 2018) 90.33% (Chen et al., 2019) 95.75% (Ronao & Cho, 2016) 86.48% (Kwon et al., 2018) –

87.4%* (Kim, 2020) 92.05% (Xia et al., 2021) 95.4% (Khan & Ahmad, 2021) 91.07% (Li et al., 2021) –

1 Number with ‘*’ means F1 score.
Table 6
Performances comparison between Maxpool or Avgpool.

Dataset Maxpool Avgpool Performance

OPPORTUNITY � × 91.39%*
× � 91.55%*

PAMAP2 � × 92.22%
× � 92.97%

UCI-HAR � × 96.32%
× � 97.10%

USC-HAD � × 93.01%
× � 93.49%

Weakly Labeled HAR � × 92.54%
× � 93.80%

1 Number with ‘*’ means F1 score.

same F1 score with 𝑟 = 4 and 𝑟 = 5 but has smaller standard deviation.
In the case of UCI-HAR, USC-HAD and Weakly Labeled HAR dataset,
the optimal down-sampling rate 𝑟 is 4. For PAMAP2 dataset, 𝑟 = 5 can
attain its peak value. The optimal down-sampling rate also depends on
sliding window size. In order to prevent the case that the receptive field
is out of scope for sliding window, we do not use larger down-sampling
rates.

5.2. Maxpool vs. avgpool

In addition to the above down-sampling rate, we continue to ex-
plore the effect of different types of pooling operation on classification
performance. Without loss of generality, keeping the other hyper-
parameters unchanged, we shift all the max-pooling operations in
heterogeneous convolution to the average-pooling operations to show
potential performance difference. Table 6 shows that the average-
pooling operation consistently outperforms max-pooling operation by
0.16%, 0.75%, 0.78%, 0.48%, 1.26% on OPPORTUNITY, PAMAP2,
UCI-HAR, USC-HAD and Weakly Labeled HAR dataset respectively. For
sensor signals, it can be attributed to the fact that average-pooling can
better represent the overall strength of a feature by passing gradients
through all indices, while gradient flows through only the max index
in max-pooling.

For the Weakly Labeled HAR dataset, Fig. 11 visually shows the
original receptive field and the various receptive fields caused by
different down-sampling rates within the heterogeneous convolution.
It can easily be observed that the yellow box that crops the original
receptive field cannot locate the interesting target activity very well.
Under the down-sampling rate 𝑟 = 5, the receptive field represented
by the purple box contains too much background noise, which could
deteriorate final classification performance. In the case of 𝑟 = 4, the
receptive field with red box is more appropriate to match the target
activity, which is well in line with our above results. All in all, it can
be clearly observed that the receptive fields produced by heterogeneous
convolution can more precisely locate the target activities and do not
expand to the background areas too much, which is very helpful for
discovering more integral target activities due to their flexible sizes.
8

Fig. 10. Performance of different down-sampling rates for different datasets. F1 Score
used on OPPORTUNITY dataset and accuracy used on others.

Fig. 11. Visualization of Weakly Labeled HAR dataset. The yellow box represents the
receptive field of filter in original scale space while the other boxes represent the
receptive fields of filters in small latent spaces which ratio are 2, 3, 4 and 5 respectively.

In order to show why the heterogeneous convolution is helpful
for improving vanilla convolution, we provide visualization analysis
to the channel weights in multimodal HAR scenario. We perform the
ablation experiment on PAMAP2 dataset, where three IMUs are placed
on different body parts of one subject consisting of chest, arm, and
ankle respectively. One heart rate monitor is also used. We choose
accelerometer, gyroscope and magnetometer as input. Fig. 12 shows
the channel weights of different sensor modalities for ‘rope jumping’



Expert Systems With Applications 198 (2022) 116764C. Han et al.
Fig. 12. Visualization of channel attention of ‘rope jumping’. The left picture is base model’s and the right figure is based on heterogeneous convolution.
activity. Compared with baseline, it is very clear that the proposed
approach can put higher emphasis on the ankle sensor (Acc2), chest
sensor (Acc1), and the arm sensor (Acc1), which is more reasonable.

We visually show the confusion matrices of the heterogeneous two-
stream CNN. Without loss of generality, the PAMAP2 dataset is chosen
for our evaluation, which is commonly recognized as a realistic and
challenging activity recognition task. Results are shown in Fig. 13.
The x-axes represent the predicted activity samples and the y-axes
represent the true activity samples, while the diagonal values represent
the number of samples to be recalled. Note that the confusion between
‘walking’ and ‘rope jumping’ is very high, which is due to that the signal
fluctuations between them are very similar. When the down-sampling
rate is 2, the number of misclassifications reaches 50. According to
accelerometer outputs caused by different speeds of ‘walking’/‘rope
jumping’, they should be more discriminative at different time scales.
In the heterogeneous two-stream CNN structure, the receptive field
will enlarge as the down-sampling rate increases. When the down-
sampling rate is set to 3, 4, and 5, the number of misclassifications
is reduced to 44, 35, and 29 respectively. The ablation studies show
that the heterogeneous two-stream convolution can effectively enhance
the learning capability of vanilla convolution for activity recognition at
different temporal scales, which is in good line with common intuition.

Finally, for efficient consideration, we evaluate the actual operation
of the proposed method in an embedded system. Without loss of gener-
ality, the Raspberry Pi 3B plus with ARM Cortex-A53 and 1 GB SDRAM
is used as our test platform, because the PyTorch library can work well
on Raspberry Pi. Specifically, we train the heterogeneous CNN on UCI-
HAR dataset and load this trained model into the embedded platform.
We perform the timing after the model is loaded and starts to output a
prediction. A Raspberry Pi-based application is developed for activity
recognition, and its user interface is shown in Fig. 14. The baseline
and our network take 160.86–178.29 ms and 170.35–186.26 ms re-
spectively to predict one sample. As we can see in Section 4, there
is still a small gap with respect to the theoretical FLOPs. However,
when evaluating actual implementation of grouped convolutions, sev-
eral researchers have verified that the measured inference times are
far from the expected ones due to high memory access cost. We leave
this investigation in future work. Despite this, a 2.56-s window is used
9

to segment sensor time series, where the sliding step length is equal
to 1.28 s. That is to say, the recognition system will wait for 1.28s to
predict next sample. The proposed method can easily meet the runtime
requirement on the resource-constrained embedded system.

6. Conclusion

In this paper, we propose a novel convolution operation for activity
recognition task, which can heterogeneously exploit the convolutional
filters within a specific convolutional layer. To make the filters to be
more diverse, we introduce a down-sampling operation to adjust the
receptive field within one filter group, which is used to recalibrate
the other normal filter group. Our experiments indicate obvious ad-
vantages of heterogeneous convolution in ubiquitous HAR scenario,
which can lead to significant performance gain across a wide range
of HAR application domains without adjusting network’s architecture.
Overall, through the state-of-the-art examples, the heterogeneous two-
stream convolution structure shows a great potential to recognize
human activities from sensory data. Due to the heterogeneous con-
volution operation, the receptive field, i.e., window length for each
specific activity can be adjusted, which allows CNN to encode con-
textual information at different temporal scales, hence making the
extracted activity features more discriminative. We visually show the
feature representations generated by the heterogeneous convolution
with different down-sampling rates, which indicates its superiority over
standard CNN. We also discuss heterogeneous convolution’s efficiency
and effectiveness by lots of ablation studies. The proposed heteroge-
neous convolutions can be easily integrated into deep models for HAR
with little computational overhead, rendering our method applicable
for practical HAR deployment. We hope it can encourage further study
about how to heterogeneously exploit convolutional filters, which can
provide the HAR research community a different perspective on activity
feature extraction from raw sensory data.

HAR has been widely utilized to monitor activities of a user con-
tinuously in an unobstructive manner. As we have known, for the
same activity, the performed way may potentially vary among users.
Therefore, an attacker may infer discriminative user-sensitive informa-
tion, e.g., identity, gender, weight, height and age from time series
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Fig. 13. Confusion Matrices on PAMAP2 Dataset with Different Down-sampling Rates.
Fig. 14. The User Interface of Raspberry Pi.
sensor data. This is due to intrinsic black-box characteristic of deep
learning, which will always be at the risk of revealing unintention-
ally user-sensitive information. Thus, it is a critical concern to deal
with the privacy leakage issue of HAR by deep learning models. For
example, in Iwasawa et al. (2017), the authors explore the privacy
protection problem that uses discriminative features extracted by CNN
for activity recognition. Their studies indicate that the CNN intention-
ally designed for activity classification still shows a strong ability to
identify different users. To resolve this issue, one feasible strategy is to
combine an adversarial loss with the conventional cross-entropy loss
during training process. Specifically, the adversarial loss can be used
to prevent privacy leakage by minimizing discriminative accuracy of
10
specific private information by an end-to-end adversarial training. The
cross-entropy loss function can be used to optimize the accuracy of
activity recognition. Overall, the adversarial loss method has a great
potential to prevent privacy leakage by reducing inferring accuracy of
user-sensitive information. We will quantitatively investigate how to
better tradeoff privacy protection and recognition accuracy at different
time scales in a future study.
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