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Abstract—Recently, the state-of-the-art performance in various
sensor based human activity recognition (HAR) tasks have been
acquired by deep learning, which can extract automatically
features from raw data. In order to obtain the best accuracy,
many static layers have been always used to train deep neural
networks, and their weight connectivity in network remains
unchanged. Pursuing the best accuracy in mobile platforms with
a very limited computational budget at millions of FLOPs is
impractical. In this paper, we make use of shallow convolutional
neural networks (CNNs) with channel-selectivity for the use of
HAR. As we have known, it is for the first time to adopt channel-
selectivity CNN for sensor based HAR tasks. We perform exten-
sive experiments on 5 public benchmark HAR datasets consisting
of UCI-HAR dataset, OPPORTUNITY dataset, UniMib-SHAR
dataset, WISDM dataset, and PAMAP2 dataset. As a result, the
channel-selectivity can achieve lower test errors than static layers.
The existing performance of deep HAR can be further improved
by the CNN with channel-selectivity without any extra cost.

Index Terms—Sensor, convolutional neural networks, activity
recognition, deep learning, channel-selectivity

I. INTRODUCTION

W ITH the rapid technical advance of smartphones
and other wearable devices, a large variety of

embedded inertial sensors like gyroscope and accelerometer
enable researchers to collect human posture signal for
activity monitoring. Wearable sensor based human activity
recognition (HAR)[1][2] has turned into a new research
hotspot with various real-world applications like health
monitoring[3][4][5][6], sports tracking[7][8], smart homes[9],
and game console designing[10] etc. Recently, deep
learning[11] models with multiple layers have been built
up to model high-level abstraction in sensor time series.
Among different deep learning models especially attractive is
convolutional neural network (CNN)[12] due to its specific
architecture, which is able to automatically capture sensor
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patterns and their variations. It is well known that deep CNNs
have achieved state-of-the-art performance across a variety of
HAR tasks. However, compared with shallow networks, deep
CNNs with many layers usually consume more computing
resource which is impractical for wearable HAR scenario.
There are continuous researches devoted to address sensor
based HAR problems. In Computer Vision (CV) field, it has
usually been assumed that that all convolutional layers are
static and their weight connectivity within network remains
unchanged during training stage. Several researchers have
proposed to add more static layers in order to improve the
performance of CNN. Typically, He et al. proposed a ResNet-
101[13], which has 101 layers, thus increasing computational
burden at millions of FLOPs. Pursuing the best accuracy in
mobile platforms with a very limited computational budget is
impractical. Various pruning or compressing techniques have
been exploited to reduce memory or computational burden.
For example, Liu et al. used network slimming[14] during
training stage, which may undermine the generalization ability
and classification accuracy of the model. Jeong et al. proposed
selective allocation of channels[15] that dynamically increases
the efficiency of CNN. To our knowledge, dynamic pruing
techniques have seldom been exploited in HAR field.
Therefore, designing a light-weight CNN for HAR that is
able to achieve state-of-the-art performance is significant.

As we have known, when one recognizes an activity, only
a few of channels are useful while other channels have little
or even no contribution to recognition performance. In this
paper, we take the inspiration from Jeong et al.[15] and
use channel-selectivity to train CNNs for HAR applications.
That is to say, during training process, each convolutional
layer can pick out more important channels. As the training
goes on, some of input channels for each convolution may
contribute little or no to the output. Those channels waste
many resources which should have been allocated in other
channel training. The channel-selectivity has the ability to
detect this kind of useless channels. The resources of these
channels can be released to Top-K important channels. To
sum up, the channel-selectivity is a dynamic pruning and
re-wiring process which can improve the efficiency of CNN.
In essence, the channel-selectivity simulates the way the
human brain learns by hippocampus. During maintenance,
new neurons are created and rewired via neuronal apoptosis
or pruning[16].

The channel-selectivity consists of two parts. First of all,
we use the Expected Channel Damage Matrix (ECDM)[15] to
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estimate the changes in output and judge which channel has
little or no contribution and needs to be removed. During the
training stage, the ECDM provides a safe yet effective way
for removing or emphasizing channels. Besides, since using
channel-selectivity could lead to unsatisfactory parameters
recycling which may undermine the generalization, the spatial
shifting[17][18][19] is imposed for more efficient parameter
recycling. The results indicate that the spatial shifting is also
enables to lead to larger kernel size for important channels.

We test this method on 5 datasets which can be
publicly avaliable, including UCI-HAR dataset, OPPOR-
TUNITY dataset, UniMib-SHAR dataset, WISDM dataset,
and PAMAP2 dataset. By substituting traditional convolution
for channel selective convolution, as well as adding spatial
shifting, we can obtain the channel-selectivity CNN for
HAR. The result shows the advantage of channel-selectivity
in HAR. The performance improvement is analyzed in details,
which enables us to draw a conclusion with regard to tpyical
HAR applications.

The channel-selectivity brings a new and effective method
via re-wiring idea. Compared with the existing methods, the
channel-selectivity has several preponderances: (a) Extensive
use: various kinds of deep HAR techniques can use it,
(b) Compatibility: it can be seamlessly integrated into the
existing deep HAR schemes that use wearable sensors, and
(c) Equilibrium: it can achieve a trade-off between HAR
accuracy improvement and computing budget easily. The
structure of this paper is structured as follows. In Section II,
we summarize the HAR’s related works. The HAR with
channel-selectivity is detailed in Section III. Section IV
describes 5 HAR datasets used, experimental settings and
main results. Ablation analysis and discussions are given in
Section V, in which various training schemes and visualizing
analysis across the channel importance are provided. In final
Section VI, we conclude the paper.

II. RELATED WORKS

In CV field, static layers have usually been used
to train deep neural networks, which obviously lacks
a plausible reason from biological viewpoint. Several
researchers have used channel pruning technique to train deep
models. Han et al.[20] have proposed channel pruning to
avoid using too many useless parameters during training. He
et al.[21] proposed a least absolute shrinkage and selection
operator (LASSO) regression based channel selection in which
least square reconstruction is used to accelerate very deep
CNNs. Gao et al. proposed feature boosting and suppression
(FBS)[22] to predictively amplify salient convolutional
channels and skip unimportant ones at run-time. Ye et al.[23]
proposed a channel pruning technique for accelerating the
computations of deep CNNs. This technique focuses on direct
simplification of the channel-to-channel computation graph of
CNN. Although the channel-selectivity has many advantages
such as accuracy improvement and biological plausibility, the
channel-selective idea has rarly been exploited in the related
HAR researches.

Recently, deep learning that is able to extract features
automatically has attracted much attention in HAR community.
For example, Jiang et al.[12] processed the raw sensor time
series into 2-dimensional signal image. Then they use a 2D
ConvNet with 2 layers to classify 2-dimensional images
for inferring specific activity. Wang et al.[24] proposed
a CNN that uses attention idea, in which weakly labeled
sensor time series can be located and recognized. Teng et
al.[25] imposed local loss into a 3-layer CNN, which is then
used to classify raw sensor signals into various activities.
Zeng et al.[26] converted each accelerometer’s dimension
into one channel that can be seen as a RGB image, in
which convolutional layers and pooling layers can be in
independent sensor dimension. However, sensor data unlike
images, it not only has connection in spatial pixels but also
has a time series relationship. Ordóñez et al.[27] firstly
prosposed to combine long-term short memory (LSTM)
and CNN, which can further improve accuracy of HAR via
fusing multimodal sensors. Although static layers have been
extensivly adopted in all above models, which could not
obtain very good performance in recognition accuracy because
of too many useless parameters caused by the channels with
low contribution. Therefore, Zeng et al.[28] and Ma et
al.[29] used attention in HAR to focus on the channels with
more contribution for classification. For present, the static
convolution has dominated the HAR research that uses deep
learning. The channel-selevtivity mechanism has never been
explored in related HAR literatures.

III. MODEL

Our research motivation is to use the channel-selectivity to
upgrade standard convolutional layer in HAR applications. Se-
lecting important channels with more contribution make more
effective recycling of parameters feasible. In HAR scenario,
what one has to be firstly dealed with is multi-channel sensor
time series signals. Following the settings of the related
literatures[15][17][18][19], there are two main operations that
need to be imposed on these input channels:
1. Channel de-allocation(deallocation): Unnecessary chan-
nels are obstructed during training stage. Related param-
eters used in future computations are released.
2. Channel re-allocation(reallocation): Obstracted chan-
nels are replaced by Top-K important channels. The pa-
rameters of Top-K important channels are recy-
cled and cover parameters of the obstructed channels.

In this way, these raw input may be converted to new
channels with more important contributions after many rep-
etitions. In other words, the important channels are retained.
Fig.1 shows the structure of channel-selectivity in our model.
The raw time series is collected from various sensors such
as accelerometer, gyroscope and magnetometer. To maintain
the continuity of time series signal, the data collected by
these sensors is firstly segmented via using sliding window
technique during the preprocessing stage. In previous method,
the data windows are then fed into the standard CNN, which
consists of N convolutional layers (Conv: convolutional layer,
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BN: Batch Normalization, ReLU: Rectified Linear Unit).
When the channel-selectivity mechanism is used, the normal
convolutional operation is replaced by the same number of
channel-selective convolutional operation which consists of
Dealloc: Channel Deallocation, Realloc: Channel Realloca-
tion, and Spatial Shift: Spatial Shift operation. Here, Channel
Deallocation and Channel Reallocation module is responbile
for obstructing useless channels and then using other important
channels to replace useless channels, while Spatial Shift can
offset the loss of diversity caused by too many similar chan-
nels. Finally, the fully connected (FC) layer performs activity
classification task. Fig.2 illustrates the two basic operations.
The size of convolution kernels applied on sensor data along
temporal dimension is K×1, which is different from imagery
data. The upper line represent I channels, each of which
has different importantce. The more important channel has
higher saturation. At the middle line, the unimportant channels
are obstructed and the corresponding parameters are released
during deallocation stage. At the bottom line, the Top-K
important channels are copyed into the released areas. In
order to find an effective and safe way to identify channels
with low contribution to the output, we impose the Expected
Channel Damage Matrix (ECDM)[15] (Section III-A). As the
diversity of the convolutional layer should be maintained, we
used spatial shifting[17][18][19] (Section III-B) to improve the
generality ability of the model. In Section III-C, we provide
more details of the training scheme using ECDM.

A. Expected Channel Damage Matrix

When one recognizes an activity, only a few of channels are
useful while other channels have little even no contribution to
recognition. Zeng et al.[28] selected useful channels of sensor
data input by using the attention mechanism. In order to
find useless layers, Zhang et al.[30] proposed channel shuffle
within group convolutions. In the convolution Conv(X ; W ), X
and W represent its input tensor and weight respectively, in
which the input channel can be denoted by I and the output
channel can be denoted by O. The height and width of the
input are h and w. Due to various sensor modalities, the
convolution kernel in CNN is only applied along the temporal
dimension. Here the kernal size along temporal dimension is
K ×1.

Expected channel damage matrix (ECDM)[15] can be used
for gauging channels’ expected functional difference. Setting
Wi to 0 indicates the i-th channel is damaged or pruned, which
needs to be blocked. That is to say, the ECDM measures
the expected number of output’s changes. For i=(1, 2, ... I),
we compute the average of the expectation over temporal
dimension to define ECDM(X ;W ):

ECDM (X ;W ) = Ex
(

X I×h×w
i ;W I×O×K×1

i

)
i

=
1

hw ∑Ex [Conv(X ;W )−Conv(X ;Wi)]:,h,w
(1)

B. Selective Convolutional Layer

Recently, spatial shifting has an extraordinary performance
in the model design of CNN. Jeon et al.[17], Dai et al.[18]
and Wu et al.[19] used similar spatial shifting for visual
recognition tasks. Actually, channel blocking and re-indexing
are necessary in deallocation and reallocation[15] of channel-
selectivity.

Here, g=(0,1) represents gate variables. For
i=(1,2, ..., I), π=(1,2, ..., I). The values of various π may
be same. The input channel X is blocked if it has not
important contribution. At this time g is equal to 0. One
channel can be copied many times if this channel is
important. However, simply copying an important channel
may undermine classification accuracy and lose the diversity
of the convolutional layer. Too many similar channels
cause the corresponding weights to degenerate due to linear
characteristics of the convolutional layer. In order to avoid the
shortcoming, we use spatial shifting bias b in reallocation. The
expression of SelectChannel[15] is the following equitions:

SelectChannel (X ;g,π)i = gi × shi f t (Xπi ,bi)

bi =
(

bh
i ,b

w
i

)
∈ R2

gi = {0,1}
πi = {1,2, ..., I}

i = {1, ..., I}

(2)

Shi f t(X ,b) represents the spatial shift operation of X , and
we define Shi f t(X ,b) as:

shi f t (X ,b)x =
H

∑
n=1

Xn ×max
(

0,1−|x−n+bh|
)
,

shi f t (X ,b)y =
W

∑
m=1

Xm ×max(0,1−|y−m+bw|).
(3)

This trick can be used more efficiently with re-allocating
parameters. During convolution process, it enhances these
copied channels’ diversity. Actually, Fig.3 is the sketch map
of spatial shifting. This method is selectively able to expand
the kernel size by recycling its parameters.

C. Training Scheme: Channel De/Re-allocation

In particular, deallocation and reallocation are designed
to train the selective convolution with S = (W , g, π , b).
Supposing deallocation, firstly giving a desired damaged
level γ>0, we use a simple greedy algorithm to solve multi-
dimensional knapsack problem (MKP)[15][31].

In comparison with other algorithm[32][33] that solve MKP,
the greedy algorithm can yield a easier computation.
Concerning the dimension of output, We normal-
ize the ECDM, namely normalized-ECDM(nECDM)[15]:

nECDM (X ;W ):, j =
|ECDM (X ;W ):, j |

∑I
i=1 |ECDM (X ;W ):, j |

≤ γ (4)

Assuming that j=(1,2, ...,O), one can determine the
channels that will be de-allocated according to the channel
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Fig. 1. Overview of the model for HAR with channel-selectivity. Acc., Gyro. and Magn. independently represent accelerometer, gyroscope and magnetometer.
The data collected by these sensors will be sent to computer. On the computer screen, it is the plot of snesor data on time.

Fig. 2. Illustration of the producedures of channel deallocation and realloca-
tion. The deep color of channels means the impotance is high.

Fig. 3. spatial shifting has a effect of enlarging kernal.

of minimum nECDM(X ;W ) iteratively on condition that the
l∞-norm of their sum of vector of nECDM(X ;W ) is less than
γ .

Supposing reallocation, we choose the Top-K most
important channels according to nECDM(X ;W )’s l∞-
norm. The channels that are currently de-allocated (g = 0)
is occupied by the selected Top-K channels randomly. The
corresponding parameters in W are set to zero when the i-th
channel is de-allocated so that the operation does not damage
the training. The maximum reallocation count Nmax is also
set to prevent too much reallocation for one feature.

Finally, the dynamic training scheme is built upon an
existing Stochastic Gradient Descent (SGD)[34] method by
simply calling deallocation or reallocation on demand. On
the other hand, when we train W via SGD, deallocation
and reallocation will update the other parameters of S:
deallocation is used to update g, while reallocation is for the
renewals of b, W , g and π .

In Section IV, our results reveal that the channel-selectivity
can further improve classification performance. We also do a

series of ablation studies in Section V to compare different
training schemes and provide visualizing analysis across the
channel importance level using wearable sensors.

IV. EXPERIMENTS AND RESULTS

On various HAR datasets (UCI-HAR dataset, UniMib-
SHAR dataset, OPPORTUNITY dataset, PAMAP2 dataset
and WISDM dataset), we conduct our experiments. We
use two baselines i.e. CNN and ResNet. The CNN has six
convolutional layers. A fully connected layer is also used.
The CNN and ResNet are used as baselines to evaluate
the performance improvement caused by the channel-
selectivity. After each activation function, BN is imposed. In
the case of OPPORTUNITY and PAMAP2, we use selective
convolution layer at the beginning since their input channels
have more than one channel. For different datasets, we set
different hyperparameters(γ , K and Nmax) to train the model.

For activity recognition tasks that use deep learning, data
segmentation is an important stage[25][35]. Segmenting
data stream is necessary for preprocessing. During data
segmentation, a mainstream approach is sliding window
technique. Recognition system’s practical demands actually
determine window size. We can find a specific window to
improve the quality of one individual activity’s recognition.
In a general way, large windows are suitful for recognizing
complex activities while small window size is good
at recognizing faster activity. Banos et al.[45] recently
investigated the effect of window size when classifying
various activities. However, the best window size for deep
learning is still unknown. Thus we apply the same window
size of previous successful cases[25][35]. We choose SGD
optimization method as the optimizer to train our models.
According to different datasets, we set the initial learning
rate. The experiments are implemented in Pytorch [46] deep
learning framework. All experiments are conducted on a
machine[25][35] with a 11GB NVIDIA 2080ti GPU, Intel i7
6850k CPU and 64 GB memory.

In Table.I, we summarize various attributes of 5 datasets
used. At the same time, the setting of sliding windows in the
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TABLE I
SIMPLE DESCRIPTION OF DATASETS

Attribute
Dataset UCI-HAR OPPORTUNITY UniMib-SHAR WISDM PAMAP2

Sampling Rates 50Hz 30Hz 50Hz 20Hz 100Hz
Number of Categories 6 17 17 6 12

Proportion of Training Data 70% 70% 70% 70% 80%
Proportion of Testing Data 30% 30% 30% 30% 20%

Sliding Window Size 128 64 151 200 512
Sliding Window Step 64 32 76 20 256

Overlap Rates 50% 50% 50% 10% 50%

TABLE II
SIMPLE DESCRIPTION OF THE BASELINE CNN AND RESNET.

Simple Description
Dataset UCI-HAR OPPORTUNITY UniMib-SHAR WISDM PAMAP2

Layer1 C(64) C(64) C(64) C(128) C(128)
Layer2 C(64) C(64) C(64) C(128) C(128)

Layer3 C(128) C(256) C(256) C(256) C(256)
Layer4 C(128) C(256) C(256) C(256) C(256)

Layer5 C(256) C(384) C(384) C(384) C(384)
Layer6 C(256) C(384) C(384) C(384) C(384)

FC ✓ ✓ ✓ ✓ ✓
Softmax ✓ ✓ ✓ ✓ ✓

Training time(epoch) 200 200 200 200 200
Batch size 64 1024 64 64 128

Learning rate 0.001 0.001 0.001 0.001 0.001

TABLE III
ACCURACY(%) PERFORMANCE OF MODELS ON VARIOUS DATASETS

Model + Method
Dataset UCI-HAR OPPORTUNITY UniMib-SHAR WISDM PAMAP2

Baseline 96.12&0.33M 77.41&1.37M 75.97&1.55M 97.01&1.50M 90.57&0.86M
Baseline + SelectConv 96.77&0.33M 79.67&1.37M 77.26&1.55M 97.44&1.50M 91.46&0.86M

ResNet 96.33&0.84M 79.09&4.27M 76.93&3.62M 98.22&3.72M 91.53&3.79M
ResNet + SelectConv 97.28&0.84M 82.36&4.27M 78.25&3.62M 98.52&3.72M 94.33&3.79M

96.98[25] 81.00[25] 78.07[25] 97.50[25] 93.03[25]
96.90[35] 76.83[26] 74.46[35] 96.90[35] 93.50[35]

Other Researchers’ Results 95.75[36] 82.30[37] 74.66[38] 93.32[39] 93.70[40]
95.18[12] 75.74[27] 77.27[41] 97.51[42] 86.00[43]
96.37[39] 74.50[40] - 98.20[44] 89.96[28]

stage of pre-processing is also introduced.
The simple description of the baseline CNN and ResNet

on different datasets can be seen in Table.II. A convolutional
layer has Ls feature maps can be represented by C(Ls). We
set the learning rate to decay exponentially. The ResNet has
the same input and output with the baseline CNN.

1) UCI-HAR dataset[47]: The dataset was collected by
30 volunteers. Their ages range from 19 to 48 years. Each
person wore a Sumsung Galaxy S2 smartphone on his waist
and executed 6 different activities.

On the basis of the baseline CNN and ResNet, we add the
channel-selectivity into each convolution layer. The test error
curves are shown in Fig.4. We set the γ to 0.0005. At the
first layer of CNN, since the input feature map has only one
channel, we do not use the channel-selectivity. At the second
layer, the K is set to 8 and the Nmax is set to 16. At the third
and fourth layer, the K is set to 16 and the Nmax is set to 32. At
the fifth and sixth layer, the K is set to 32 and the Nmax is set to
64. It can be seen in Table.III that our accuracy is 97.28%. It
obtains 2.1% and 1.53% performance gain over Ronao et al.
(95.75%)[36] and Jiang et al. (95.18%)[12] using CNN. It



2168-2194 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2021.3092396, IEEE Journal of
Biomedical and Health Informatics

6

also yields 0.38% improvement over Tang et al. (96.90%)[35].
When compared with Ignatov et al.’s results (96.37%)[39], our
method achieves 0.91% accuracy improvement.

Fig. 4. UCI-HAR dataset’s test error on different models.

2) OPPORTUNITY dataset[48]: The OPPORTUNITY
dataset has been collected in a sensor-rich environment which
consists of 15 wired and wireless network sensor systems.
In this environment, the volunteers with on-body sensors
performed their daily behavior in morning in order to collect
17 kinds of activities.

On the basis of baseline CNN and ResNet, we add the
channel-selectivity into each convolution layer. The error rates
are shown in Fig.5. We set the γ to 0.0005. The K and
the Nmax are both set to 16 at the first layer and second
layer. Then, the K is set to 32 and the Nmax is set to
32 at the third layer and fourth layer. Finally, at the fifth
layer and sixth layer, the K is set to 64 and the Nmax
is also set to 64. The result can be seen in Table.III, in
which the channel-selectivity can improve both ResNet and
CNN. According to Table.III, our method (82.36%) outper-
forms Zhang et al.’s result (82.30%)[37] by 0.06% while using
far less parameters. Our result that uses channel-selectivity
in ResNet surpasses Zeng et al. (76.83%)[26], Hammerla et
al. (74.50%)[40], Ordóñez et al. (75.74%)[27] and Teng et
al.’s[25] result (81.00%).

3) UniMib-SHAR dataset[49]: The whole dataset was
gathered by smartphone based on Android operating system.
It can be used for detecting and recognizing fall activities. The
dataset has 11,771 human activity samples. The 30 subjects
within 18 and 60 years old joined in this collection process.

We add the channel selective submodule to CNN and
ResNet. The γ is adjusted to 0.0005. Since the input feature
map has only one channel, the channel-selectivity is useless.
Thus we use the normal convolution at the first layer. The K is
8 and Nmax is 16 at second layer. At the next two layers, the K
is adjusted to 16 while the Nmax is adjusted to 32. Finally, the
K is set to 32 and the Nmax is adjusted to 64 at the final two
layers. The error rates is shown in Fig.6 and the experiment
result is shown in Table.III. As we have known, Yang et al’s

Fig. 5. OPPORTUNITY dataset’s test error on different models.

result[41] was 77.27% via dynamic fusion method. Our result
is 78.25%, which obtains 3.59% and 3.79% accuracy gain over
Li et al. (74.66%)[38] and Tang et al. (74.46%)[35].

Fig. 6. UniMib-SHAR dataset’s test error on different models.

4) WISDM dataset[44]: The WISDM group collected the
WISDM dataset. They used smartphones (Android operating
system) with accelerometer sensors to sample sensor time
series. Each person attached smartphone in front leg pockets
and performed 6 kinds of activities under supervision.

The channel-selectivity is used to replace the normal convo-
lution layer. The test error curves are shown in Fig.7. We do
not use the channel selective convolution layer at the first since
the input feature map has only one channel. The γ is adjusted
to 0.0001. At the second layer, the K is set to 16 and the Nmax
is set to 32. At the third layer and fourth layer, the K is set to
16 and the Nmax is set to 32. The K is set to 32 and the Nmax
is set to 64 at the fifth layer and sixth layer. Table.III shows
the experimental results. As we have known, the most high
performance reported in the past for this dataset is 98.23%
(Alsheikh et al.[42]), which used greedy layer-wise training
based on deep belief networks. Our method (98.52%) is still
able to produce an accuracy improvement on WISDM dataset,
beating Ravi et al’s result (98.2%) by 0.32% while consuming
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fewer parameters. Our result with channel-selectivity surpasses
these results including Ignatov et al. (93.32%)[39], Teng et al.
(96.90%)[25] and Tang et al. (97.50%)[35].

Fig. 7. WISDM dataset’s test error on different models.

5) PAMAP2 dataset[50]: The PAMAP2 dataset can be
used for monitoring physical activities. It was performed by 9
subjects, who wore three inertial measurement units (IMUs).
Subjects’ heart rate was also monitored by heart rate moni-
tors. Researchers can use this dataset for strength estimation
and activity recognition. Various tasks such as classification,
feature extraction, data processing and segmentation can also
be developed and evaluated on this dataset.

We replace the normal convolution layer by the channel
selective convolution layer. In Fig.8, we show the curves of
test error. The γ is set to 0.0005 during the whole training.
At the first two layers, we adjust the K and Nmax to 16 and
32 respectively. Then, at the subsequent two layers, the K
and Nmax are equal to 16 and 32 respectively. The final two
layers have the same K while the Nmax is adjusted to 48. The
result can be seen in Table.III. Our result trained with the
channel-selectivity methods is 94.33% , which achieves 0.63%
improvement over the best result published by Hammerla et al.
(93.70%)[40]. Our result also surpasses these results including
Khan et al. (86.00%)[43], Tang et al. (93.50%)[35] and Zeng
et al. (89.96%)[28].

We also compare the channel-selectivity CNN with our
previous local loss method and its corresponding Lego variant.
The resuts are shown in Table.III. It shows that channel-
selevtivity is able to outperforms or match our previous
techniques[25][35]. To be specific, the channel-selectivity
method outperform our local-loss method 0.38%, 1.36%,
0.18%, 1.02%, 1.3% respectively on UCI-HAR dataset, OP-
PORTUNITY dataset, WISDM dataset, UniMib-SHAR dataset
and PAMAP2 dataset.

V. ANALYSIS AND DISCUSSIONS

In this section, we use the baseline CNN with 6 layers. Each
of them uses the channel selectivity mechanism. We try to

Fig. 8. PAMAP2 dataset’s test error on different models.

Fig. 9. OPPORTUNITY dataset’s error rates on five CNN models with
different re/de-allocation scheme.

find which part of the channel-selectivity works. We compare
five different channel re/de-allocation schemes:

The Zero channel-selectivity(+D+Rz+S): Setting the
corresponding convolution weights to 0 when one channel is
re-allocated. Spatial shifting is used too.

The Random channel-selectivity(+D+Rr+S): Set-
ting the corresponding convolution weights randomly when
one channel is re-allocated. Spatial shifting is used at the
same time.

Zero re-initialization(+D+Rz): Setting the corresponding
convolution weights to 0 when one channel is re-allocated.
Spatial shifting is not used here.

Random re-initialization(+D+Rr): Setting the corre-
sponding convolution weights randomly when one channel is
re-allocated. Spatial shifting is not used.

De-allocation only(+D): Only deallocation is used.
Shift only(+S)[17][18][19]: All channels use spatial shift

without re/deallocation.
We calculate the mean value and variance of five different

CNN models on OPPORTUNITY dataset with different re/de-
allocation scheme. In Fig.9, it can be seen that +D+Rz+S have
the best performance among all re/de-allocation schemes.
The results indicate that using de/re-allocation alone is not
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(a) Baseline (b) ResNet + Channel-Selectivity

Fig. 10. OPPORTUNITY dataset’s Confusion Matrix on different methods

Fig. 11. Spatial shift biases tested on OPPORTUNITY dataset

enough.
In Fig.10, we compute confusion matrices on

OPPORTUNITY dataset. When the channel-selectivity
is integrated into ResNet, which yields much lower test errors
than that of the baseline CNN.

The spatial shift technique has been explained in
Section III-B, which is able to enlarge kernel size and
effectively preserve the generality ability of model. Fig.11
shows how the spatial shift works within the channel-
selectivity CNN on OPPORTUNITY dataset. What we can
see is that the biases caused by spatial shift have an obvious
tendency to align at the earlier layers. At the final layers, the
spatial shift tend to enlarge the amount of new information
that comes from previous channels. On the other hand, the
biases at the final layers demonstrate less tendency to align,
but a larger diversity on the value, which suggests larger
kernel sizes.

(a) Cycling

(b) Walking

(c) Sitting

Fig. 12. Channel significance’s visualization
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Fig. 13. Demo Application on mobile phone (Google Nexus 6)

TABLE IV
ACTUAL INFERENCE TIME ON SMARTPHONE

Method Actual Inference Time (ms)

Baseline CNN 193(±20)

Channel-Selectivity 195(±25)

By visually analyzing the influence of different sensors
placed on various human body’s parts, we further evaluate the
effect of channel-selectivity mechanism in multi-modal HAR
scenario. We conduct experiments on a multimodal sensor
dataset, i.e., PAMAP2. The channel-selectivity consciously
is able to automatically learn different sensor’s precedence
rather than equally handle all sensor modalities. Therefore,
the channel-selectivity yields excellent results in deep feature
fusion and multimodal HAR tasks. The results of Fig.12 are
plausible and can be easily understood according to people’s
daily intuition.

Finally, in order to demonstrate the superiority of our
method, we run the channel-selectivity model on real mobile
devices. Following the guidence of the APP[51] which has
released source code, we obtain the actual inference time. In
Fig.13, we provide several screenshots of the practical test in
APP. On WISDM datast, we train the channel-selectivity and
normal CNN respectively. We aim to construct an application
which can be run on Android operation system. The trained
models are transferred into .pb files. The APP is operated on
a Google Nexus 6 phone which is equipped with an Android
11.0 operation system. Table.IV shows the comparasion of
inference time. In the test, there is nearly no any difference
between channel-selectivity and normal CNN according to
inference speed.

VI. CONCLUSION

In this paper, the channel-selectivity idea is for the first
time adopted in HAR scenario. The CNN can be trained dy-
namically with the channel-selectivity operation combined by

de/re-allocation and spatial shift. On 5 public HAR datasets in-
cluding UCI-HAR dataset, OPPORTUNITY dataset, UniMib-
SHAR dataset, WISDM dataset, and PAMAP2 dataset, we
perform extensive experiments. We construct baseline CNN
and ResNet for each dataset. The result is comparable with the
previous results reported in relevant literatures. As mentioned
above, the channel-selectivity can lead to a dynamic and
efficient training. Since more important or decisive channels
are selected, the channel-selectivity can obtain lower test errors
in HAR. Experimental results show that the channel-selectivity
can consistently improve test errors of baselines. There is not
a significant increase in terms of computation overhead.

For standard convolution, many sensor channels almost have
no contribute to output, while these channels still occupy too
many resources. On the other hand, some inputs channels have
more important or decisive influence to output. Visualization
of channel importance of various activities in PAMAP2 dataset
is shown in Fig.12. Compared to standard convolution, the
channel-selectivity module can find these channels of low
contribution via ECDM. Then the resources of these channels
with low contribution are reallocated for the Top-K most
important or decisive channels. Under this circumstance, the
important channels can be duplicated multiple times. After the
allocation, the input channels will all have contribution to the
output. However, due to the linearity of convolutional layer,
naively copying one channel in the allocation process does not
provide any benefit. It is well known that the corresponding
model will degenerate if two input channels are completely
identical. Therefore, to avoid this shortcoming, the spatial
shifting technique is applied to enhance the diversity on these
copied channels, which can improve the generality ability
for the channel-selectivity CNN. Five different channel re/de-
allocation schemes with/without spatial shifting is compared
in Fig.9 and Fig.11. To sum up, without any extra cost such
as number of paramerters, our experimental results indicates
that the channel-selectivity method can lead to a significant
performance improvement on various wearable HAR tasks
(Table.III). De/re-allocation can reuse memory. In HAR tasks
based on wearable sensors, the reuse of memory is very
useful. The channel-selectivity has a plausible explanation in
biology. Its compelling performance on the benchmark HAR
datasets is also verified by our results. We believe that channel-
selectivity will open a new direction of training CNNs for
HAR.
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