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Abstract—To date, convolutional neural networks have played a dominant role in sensor-based human activity recognition (HAR)
scenarios. In 2021, researchers from four institutions almost simultaneously released their newest work to arXiv.org, where each of
them independently presented new network architectures mainly consisting of linear layers. This arouses a heated debate whether the
current research hotspot in deep learning architectures is returning to MLPs. Inspired by the recent success achieved by MLPs, in this
paper, we first propose a lightweight network architecture called all-MLP for HAR, which is entirely built on MLP layers with a gating
unit. By dividing multi-channel sensor time series into nonoverlapping patches, all linear layers directly process sensor patches to
automatically extract local features, which is able to effectively reduce computational cost. Compared with convolutional architectures, it
takes fewer FLOPs and parameters but achieves comparable classification score on WISDM, OPPORTUNITY, PAMAP2 and
USC-HAD HAR benchmarks. The additional benefit is that all involved computations are matrix multiplication, which can be readily
optimized with popular deep learning libraries. This advantage can promote practical HAR deployment in wearable devices. Finally, we
evaluate the actual operation of all-MLP model on a Raspberry Pi platform for real-world human activity recognition simulation. We
conclude that the new architecture is not a simple reuse of traditional MLPs in HAR scenario, but is a significant advance over them.

Index Terms—Human Activity Recognition, Deep Learning, all-MLP, Wearable Sensors
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1 INTRODUCTION

VER the past few decades, with the vast proliferation
Oof Internet of Things (IoT) technology, sensor-based
Human Activity Recognition (HAR) has drawn favorable
attention and become an active research area. Human ac-
tivity signals can be collected and analyzed from different
sensor modalities (e.g., inertial sensors), which can provide
a smart decision on embedded devices [1]. Due to excep-
tional advantages in sensing devices such as lower cost,
higher accuracy, and smaller size, HAR has a wide range
of applications in Ambient Assisted Living (AAL), motion
tracking, elderly health assessment, and Human-Machine
Interaction (HMI) [2], [3], which have greatly improved the
quality of life and the healthcare of the elderly or other
dependent people.

Traditional machine learning (ML) algorithms such as
Random Forest, naive Bayes, and Support Vector Machine
(SVM) have achieved competitive results in HAR area.
However, they are usually constrained by complex feature
engineering involving specific expert experience or domain
knowledge, where designed statistical features have to be
manually extracted from raw sensor data. Thus, conven-
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tional ML algorithms using handcrafted features are not
very suitable for HAR since complex human activities
usually contain highly abstracted semantics. Recently, the
emergence of deep learning and increased computational
power have provided an effective solution in HAR scenario
[4]. Artificial intelligence methods with automatic feature
extraction have been adopted for classifying complex hu-
man activities [5]. Through automatically capturing dis-
criminative feature representations, Convolutional Neural
Networks (CNNs) have gained strong results on various
standard HAR benchmarks and turned to the current state-
of-the-art, which is widely utilized for activity recognition
6], [7].

In another line of research, almost at the same time,
four research groups located in different institutions (e.g.,
Google, Facebook, Tsinghua University, and Oxford Univer-
sity) released their newest work in the first week of May
2021 [8], [9], [10], [11]. All of them present novel network ar-
chitectures mainly consisting of linear layers, which perform
comparably well or even better than convolutional-based
architectures. As is universally known, static-parameterized
multi-layer perceptron (MLP) with a huge function space
can fit arbitrary functions in theory [12]. Current main-
stream deep learning architectures in computer vision (CV)
and natural language processing (NLP) areas are returning
to MLPs. This research progress immediately sparks related
debate and discussion: Whether pure MLPs are sufficient?
However, on ImageNet, their current accuracies still main-
tain 5-10% lower than those reported by the best CNNs or
Transformer networks. Thus, it still needs deeper research
to explore their potential to the greatest extent.

Actually, highly miniaturized wearable devices often
have a very limited computational budget. Real HAR appli-
cations typically pursue the best accuracy under a resource-
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constrained platform, where an accuracy/speed trade-off
should be preferably considered. A natural idea arises: in
order to develop a lightweight HAR model, can we solely
exploit MLP architectures? In this paper, taking inspiration
from recent MLP research, we investigate the necessity
of convolution in key HAR applications and propose a
novel MLP-based alternative to CNN. The overview of the
proposed all-MLP model is shown in Fig.1. The all-MLP
model is stacked by a set of MLP layers with a simple linear
gate unit, which implements channel projection and spatial
projection respectively. To the best of our knowledge, the
all-MLP is the first HAR model relying entirely on MLPs
without any convolutional architecture. Moreover, the all-
MLP architecture is entirely based on matrix multiplication,
which is similar to plain convolution and can be easily op-
timized using popular deep learning libraries [13]. Despite
the radically new design, all-MLP obtains strong results on
several activity recognition benchmarks, including WISDM,
OPPORTUNITY, PAMAP2 and USC-HAD. Through linear
transformation and gating operation, it can significantly
surpass CNNs meanwhile greatly reducing memory and
computational overhead. The main contributions of this
paper are summarized as follows:

e Without using convolution, we propose a radically new
architecture entirely relying on MLP layers with a simple
linear gating for HAR task. Due to the simplicity of these
MLP architectures, our model can easily handle time series
sensor data.

o Extensive experiments are conducted on several public
HAR datasets, which indicate that our all-MLP model can
achieve competitive results at smaller memory and compu-
tational cost. Several key hyper-parameters are analyzed in
detail.

e All computations only involve in matrix multiplication,
which can be easily optimized with mainstream deep learn-
ing libraries. This advantage can promote practical HAR
deployment in wearable devices. We also examine actual
speedup on a Raspberry Pi platform with an ARM-based
computing core. The all-MLP model achieves ~ 4x actual
speedup over CNNs meanwhile maintaining comparable
accuracy.

The remainder of this paper is organized as follows: In
Section 2, we review several representative convolutional
architectures in HAR research and recent MLP backbones.
We introduce our proposed MLP-based model in detail in
Section 3. The benchmark datasets, experiment setups, and
our main results are introduced in Section 4. We further
evaluate several key hyperparameters by conducting abla-
tion experiments in Section 5. Finally, we conclude the paper
in Section 6.

2 RELATED WORKS

Deep learning for HAR: As an alternative to shallow
ML approaches, CNNs have become a mainstream deep
learning technique for classifying human activities from raw
sensor data, which have provided state-of-the-art perfor-
mance over a large variety of HAR tasks [14]. [15] first
adopted CNNs in HAR scenario to automatically capture
local invariant features of time series from the accelerometer.
[16] further presented the unique advantage of CNNs via
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learning hierarchical feature representation from inertial
sensors under supervised HAR scenario. [17] proposed a
deep framework by combining automatic features extracted
by CNN and shallow handcrafted features, which is applied
for real-time execution on wearable devices. [18] further
improved the performance of CNNs by replacing cross-
entropy loss with local supervised loss, which is very ben-
eficial for memory reuse. [19] investigated the influence of
hyperparameters for different HAR tasks, which provides
detailed guidelines for the reseachers who aim to adopt
deep learning in their problem setting. [20] presented a
novel network architecture called DeepConvLSTM by in-
serting LSTM layers into normal CNN, which shows ob-
vious advantages in extracting temporal features from raw
sensor time series. [21] introduced a new framework called
AttenSense, which combines attention module with a CNN
and a Gated Recurrent Unit to learn the dependencies of
sensor signals across both spatial and temporal domains.
However, current deep HAR research mainly focuses on
convolutional structure. In this paper, our main research
motivative is to explore the potentiality of MLPs in HAR
scenarios to the greatest extent.

MLP backbones: Current mainstream deep learning re-
searches are returning to pure MLPs. Taking an idea of data
pre-processing in Vision Transformer (ViT), [8] first released
a new MLP backbone called MLP-Mixer, which can provide
interaction between channels (channel-mixing) and patches
(token-mixing). [9] presented a similar network architecture,
which produces competitive results compared with state-of-
the-art in CV area. [10] utilized a gating unit to reinforce
patch communications, which is superior to MLP-mixer. [11]
proposed an External-Attention block, which is built via
solely using two MLP layers. [22] introduced a circulant
channel-specific structure to generate a larger reception
field, which is consistently able to provide higher recogni-
tion accuracy with fewer parameters. [13] reviewed recent
MLP works and summarized their advantages, which indi-
cates that pure MLPs can be readily deployed on resource-
constrained hardware and reduce energy consumption. To
the best of our knowledge, pure MLP architectures have
been rarely exploited in HAR scenario. In this paper, we
first propose a lightweight network architecture which is
entirely built on MLP layers for HAR tasks.

3 MODEL
3.1 Architecture Overview

In this section, we introduce our MLP-based activity recog-
nition approach. As we know, convolutional neural net-
works (CNNs) have demonstrated a competent ability to
simultaneously capture local dependencies over both differ-
ent time stamps and sensor modalities across multimodal
sensor data, where all the modalities are considered in each
time stamp, such that the translating invariance introduced
by local filters leads to accurate recognition. In our work,
following the same setting [23], [24], we still vertically
stacked all axes of sensor signals to form 2D matrices. Using
a sliding window with a fixed length and a specific over-
lap percentage, we first divide the raw sensor time series
into continuous samples. As illustrated in Fig.1, the overall
network architecture is entirely built on MLP layers. The
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Fig. 1. Overview of the MLP-based model for HAR. The curves visualized on the computer screen are raw multi-channel

sensor time series that are further split into patches.

proposed network is mainly composed of a stack of linear
layers including channel-projection and spatial gating unit.
Different from CNN, the all-MLP model receives a sequence
of linearly projected patches which is split from the above
multi-channel sensor samples. For brevity, we omit the
activation and normalization. Finally, the final classification
results can be obtained through a fully-connected layer. In
the next subsection, we will present the details of our all-
MLP model.

3.2 Patch Embedding

Our data pre-processing stage is different from normal
CNNs which allows an overlap between adjacent windows
to preserve the continuity of activities. As shown in Figure 1
and Figure 2, similar to recent mainstream MLP backbones,
our all-MLP takes an input of N non-overlapping patches
which is split from these activity windows. Specifically, the
activity windows are constructed like image data, contain-
ing the two dimensions corresponding to time-steps and
heterogeneous sensor modalities. It should be noted that the
patches will be sent to the model in turn, which is different
from traditional stacked MLPs. The activity label of each
window will be assigned according to the majority voting
in the corresponding samples that constitute the window. To
utilize MLP architectures, we assume that X € RE*H*W jg
an input tensor corresponding to an activity window, where
H and W represent the number of heterogeneous sensor
modalities and time-steps respectively. Here C' denotes the
number of channels in the input tensor. As a result, we
crop the raw input into non-overlapping patches P =
{po,p1-..pn}. Here n is equal to %, where h, and w,
represent the heigh and width of evper§7 patch respectively.
Each patch will be further unfolded into a one-dimension
feature vector, whose length is equal to C x h,, x w,. Finally,
all the patches will be further patch-wisely mapped to a
predefined embedding dimension via a shared-weight fully-
connected layer:

Xi — W,P; + by, (@8]

where W, € R?** and b, € R? are the weights and bias
of the linear patch embedding layer. Figure 2 illustrates the

linear embedding module in detail. All the numbers and
variables will be detailed in the following experiment part.

3.3 all-MLP Block

The proposed network consists of a set of MLP layers,
which also uses standard components such as residual
connection [25] and layer normalization [26]. The input can
be represented as X € R"*?, where n is the number of
patches and d is the embedded dimension. The block can
be formulated as follows:

U = Norm(o(f1(X))), )
Z=S(U), 3)
Y =X + Norm(f2(2)), 4)

where o refers to Gaussian error linear units (GELUs)
[27] activation and Norm(-) represents layer normalization
operation. f; and f» denote channel-projection which fol-
lows nomenclature in MLP-mixer [8] and can be treated as
1x 1 convolution operation for channel expansion. A critical
component in the block is s(-) [10], which is a gating unit
to provide communication between patches. s is inspired
from Gated linear units (GLU) [28] and can achieve long-
range spatial interactions than token-mixing [8] meanwhile
reducing computational cost.

3.4 Spatial Gating Unit

Similar to convolutional filters in CNNSs, to capture infor-
mation over spatial dimension, the most practical idea in
the all-MLP architecture is to use plain linear projection [8],
[9]. The schematic diagram of the spatial projection layer is
shown in Figure 3. Assuming the same input X € R"*? as
indicated above, we can formulate the operation as:

fr(X)=WXT +b, )

where W € R™*" and b € R" are the parameters of linear
projection. Spatial Gating Unit (SGU) [10] is introduced in
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Fig. 3. The schematic diagram of the proposed spatial
gate unit that introduces efficient spatial interactions across
patches. Here b, d, n represent the batch size, channel di-
mension, and the number of patches respectively. The inter-
actions in time-series and sensor modalities across patches
will be captured SGU automatically by SGU. The gray part of
the output represents more important patches.

order to better extract spatial features. Specifically, we reg-
ulate the multiplication between linear-transformed input
and its initial input as the output of SGU. The procedure of
SGU can be expressed as follows:

$(X) =X ® f(Norm(X)), (6)

where ® is Hadamard product operator and f denotes
linear layers. In practice, Spatial Gating Unit (SGU), i.e.,
s(.) is a key ingredient in merging modality-specific
features across patches, which adopts such element-wise
multiplication to regulate the level of contribution of
the patch. Specifically, to ensure training stability, we set
the initial values of W and b to be close to zero and
one respectively, which indicates that f(z) ~ 1 and thus
s(z) & x in the aforementioned formulation, i.e., Eq. 6. Such
an initialization makes the branch of SGU initially to be an
identity mapping, which enables SGU to gradually capture
modality-specific information across patches. That is to say,
s(.) can be viewed as an identity mapping at an early stage
of training, where all individual patches will be processed
independently without any cross-patch communication.
Our all-MLP model can behave as a standard feed-forward

Embedding

X,

network at the first few epochs of training [10], [29].
s(.)only gradually injects modality-specific information
across patches during learning. For the projection branch
in SGU, each row in W can be seen as a query for each
patch, which is in charge of learning global features via
projection branch fr(X) = X7 + b. After that, the element-
wise multiplication is performed between the output of
fr(X) and original X to capture cross-patch dependencies
across multi-modal sensor data. Overall, SGU provides an
alternative mechanism other than self-attention, which is
similar to Squeeze-and-Excite (SE) block [29] in terms of
element-wise multiplication. However, different from SE,
SGU is computed based on a projection over the spatial
(cross-patch) dimension rather than the channel dimension.

The computational complexity of SGU without split is
equivalent to n?d, which is computationally heavy. Due to
the limited computing power in wearable devices, we con-
tinue to divide it into two independent parts evenly along
channel dimensions. As the channel dimension is further
decreased to half of the original input, the computational
cost can be significantly reduced. The modified SGU can be
formulated as:

s(X) = X1 ® f(Norm(X2)). 7)

Here both X; and X, are two parts of the X and their
relation can be represented as X = X; @ X3, where @ is
referred to as matrices merging operation. As the channel
dimension decreases to half of the input, the computational
cost can be significantly reduced.

4 EXPERIMENT

In order to evaluate the effectiveness and efficiency of all-
MLP models against representative convolutional networks,
we conduct our experiments on four HAR datasets. The
experiments consist of four parts. In part one, the four
public HAR datasets used in our evaluation are introduced.
In part two, the experiment setup and data pre-processing
procedure are presented. In part three, detailed quantitative
comparisons are performed across different HAR datasets.
Finally, ablation studies are conducted and several key
factors are analyzed.
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4.1 Datasets Description

We selected four popular HAR datasets including WISDM,
OPPORTUNITY, USC-HAD, and PAMAP2 as our bench-
marks for evaluation. These datasets contain diverse types
of human activities and sensor modalities, which are in-
volved in a large variety of application scenarios. On the
whole, they are capable of simulating practical HAR appli-
cations for our evaluation.

WISDM dataset [30]: The Wireless Sensor Data Mining
(WISDM) Lab built this dataset. Under a supervised
condition, 29 volunteers were instructed to perform six
diverse types of daily human activities. The smartphone
embedded with an accelerometer was placed on each
volunteer’s front leg for data collection. The sampling
frequency is set to 20Hz. The whole dataset contains 10,981
samples and each sample corresponds to 10-second sensor
data.

OPPORTUNITY dataset [31]: Under a sensor-rich
environment, the dataset was collected by Daniel et al. in a
breakfast preparation scenario. Without loss of generality,
we utilize the subset from the OPPORTUNITY challenge
consisting of unsegmented sensor recordings from 4
subjects. The whole sensor system consists of 72 sensors
with 10 different modalities, which are attached to 12
different parts of the human body. Each participant was
asked to perform 17 types of breakfast-related activities
such as ‘Preparing and drinking coffee’, ‘Preparing and
eating sandwich’, and ‘Cleaning table” for 20 repetitions.
The sampling rate is set to 30Hz.

PAMAP2 dataset [32]: Physical Activity Monitoring for
Aging People 2 (PAMAP2) dataset consists 18 different
types of activities of daily living (ADL) such as ‘Nordic
walking’, ‘Rope jumping’, “Vacuum cleaning’ etc from 9
volunteers. Each volunteer wore 3 IMUs and a heart-rate-
monitor. The sampling rate of all 3 IMUs is 100Hz, which
is down-sampled into 33Hz for fair comparison. The heart
rate monitor is set to 9Hz for estimating motion intensity.
The PAMAP?2 dataset has been made publicly available.

USC-HAD dataset [33]: The University of Southern Cal-
ifornia Human Activity Dataset (USC-HAD) was designed
for diverse ML algorithm evaluations, especially for elder
care and health monitoring. 14 participants joined in the
data collection process. Attaching sensing devices to their
front right hip, each participant performed 12 well-defined
low-level daily activities including ‘Sleeping’, “Walking left’,
‘Walking right’, ‘Running forward’, ‘Elevating up’, and ‘El-
evating down’, etc. The sampling rate is set to 100Hz.

4.2 Experimental setup

Because the four selected benchmark HAR datasets contain
various human activities in different contexts, the activities
under evaluation may be diverse according to duration
and complexity. Thus, we introduce several key hyper-
parameters such as window length, sampling rate, and the
height and width of each patch, which have a potential
effect on final activity recognition performance. Moreover,
we describe the network architectures, implementation
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details, and evaluation procedure used in the following
experiments.

4.2.1 Dataset Prepossessing

Several important properties of these datasets are summa-
rized in Table 1. Time series signals collected from different
sensor modalities have to be first segmented into continu-
ous samples by sliding window technique, which are then
normalized into zero mean and unit variance via subtracting
the mean and dividing by standard deviation. An overlap is
allowed between consecutive windows. Actually, the win-
dow size and overlap have an important effect on classi-
fication performance, which could be variable and rely on
specific activity recognition tasks. Because there is no con-
sensus on what are the optimal window size and overlap,
we utilize the previous successful segmenting strategy [18],
[34], which transforms multi-channel sensor time series into
desired input tensors. Referring to recent literature [21], [35],
[36], we implement a Fast Fourier Transform to generate
windows of physical activities for PAMAP2. First, a linear
interpolation is used to handle data loss of raw sensory data.
Second, a 5.12-second window is used to divide the sensory
data. Third, the Fast Fourier Transform (FFT) is computed,
which is in charge of transforming time window from
time domain to the frequency domain. As a result, we can
have one 256-point representation of frequency spectrum
between the 0-50 Hz frequency range. It is well known
that the energy of physical activities often concentrates on
low-frequency parts. Without loss of generality, the first 120
points of the spectrum is selected, which approximately
cover the 0-23 Hz frequency range. That is to say, the
window size of frequency is set to 120*1 for PAMAP2 in
the frequency domain. In other cases, e.g., WISDM, USC-
HAD, OPPORTUNITY, the activity windows still contain
the two dimensions that correspond to time-steps and het-
erogeneous sensor modalities respectively. Moreover, the
padding technique is used to evenly divide each window
into patches for further use in MLP models.

We detail how the training and test data are partitioned.
Actually, splitting the training, validation, and test sets has a
huge impact on the final results. It is important to choose the
proper training and test sets from the same distribution and
it must be taken randomly from all the data. Here we use the
train-test-split() method from the sklearn library to split the
data into train, validation and test sets. For fair comparisons,
we strictly follow the same split strategy available in recent
research literature [19], [20], [36], [37]. For example, the
same split strategy [20] in the OPPORTUNITY challenge
has been utilized to train and test our models. Specifically,
the data of all ADL and drill sessions from subject 1, as
well as ADL1, ADL2 and drill sessions from Subjects 2
and 3 is used to train our models. The data of ADL3 from
Subjects 2 and 3 is left for validation. The data of ADL4
and ADL5 from Subjects 2 and 3 is held out for the final
test. For PAMAP2 dataset, as the studies in [19], [38] have
suggested, the recordings from participants 5 and 6 are used
as validation and test sets respectively, while the rest data
is held out for training. For WISDM dataset, as suggested
by [36], [39], 70% data is used to create the training set, and
the validation and test sets are produced with the remaining
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30% of the data. The reason for leaving out the validation set
is to tune the hyper-parameters, which enables the model to
perform the best on unseen data. Finally, USC-HAD dataset
has a version [37], [40] that is already split into training,
validation and test sets as a ratio of 7:1:2 that contain data
from different participants, therefore the user-independent
strategy is dominant in this case.

4.2.2 Networks Setup

In this subsection, the network architecture and train-
ing details are introduced in detail. Referring to recent
MLP research, we adopt common components in our
non-convolutional architecture: Layer Normalization [26],
element-wise activation function (GeLU [27]) and skip-
connection [25]. In the case of WISDM, PAMAP2 and USC-
HAD, the hidden dimension and channel-expanded dimen-
sion are set to 256 and 768 respectively in the all-MLP model.
For OPPORTUNITY, the channel-expanded dimension is set
to 1024, since there is high dimension for the input sensor
channel in this dataset. Following current HAR research
literature, we build a 3-layer CNN as our baseline, which
can provide very close results compared to current represen-
tative state-of-the-art CNNs. The 3-layer CNN can be readily
deployed in wearable-based HAR applications with limited
computing power. The shorthand description of baseline
CNN can be presented as C (64) — C (128) — C(256) —
FC or C(128) — C(256) — C(384) — FC according
to different datasets, where the C'(n) denotes channel di-
mension and F'C represents full-connected layer for final
classification. When aiming for state-of-the-art results for
CNN:s, researchers often prefer stochastic gradient descent
(SGD) with momentum because models trained with Adam
have been observed to not generalize as well. However,
our MLP architecture can be seen as an evolution from
the transformer. it is hard to directly adopt CNN'’s training
recipes to train the MLP, which is due to the incompatibility
between SGD and Transformers, as discussed in [41], [42].
Compared with the SGD optimizer, AdamW [43] enables
more successful training of transformers, which has been
widely applied for MLP architectures. Thus, we choose
AdamW in all-MLP and SGD in CNN as our optimizers
respectively. The other training hyperparameters are set
to be the same. We use smooth cross-entropy [44] as loss
function. A piecewise-decay strategy is adopted, where the
initial learning rate is set to 5e-4, which decays to 10% every
50 epochs. The number of training epochs is set to 200 and
the batch size is 256. All the experiments are implemented
with the PyTorch deep learning framework on a server
(GPU: 24 GB GeForce RTX 3090; CPU: 6th Gen Intel i7-
6850K; RAM: 64 GB).

4.3 Quantitative Comparison

In this part, we conduct quantitative comparisons in terms
of accuracy, FLOPs, and the number of parameters. Our
all-MLP models are compared with the 3-layer baseline
CNN and other representative convolutional networks. The
hyper-parameters have been carefully chosen to ensure
training stability and prevent overfitting, which will be
discussed in further ablation studies. Following recent lit-
erature [45], [46], we choose the best epoch result as the
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final result and compute the average result over ten runs for
our evaluation, which proves that the results are stable.
Recognition Performance: Since sensor data for specific
activities such as falls of elderly people is particularly hard
to collect, it leads to a main challenge called class imbalance
for HAR. To provide a more comprehensive evaluation,
we exploit both accuracy and weighted Fl-score as our
performance metrics, which can be formulated as:

A TP+ TN ®)
ccuracy =
Y“TPYFP+TN+FN’
e precision; - recall;
F17Weighted = Z 2 % w; (9)

3 .. b
Pt precision; + recall;

where T'P, T'N, F'P, and F' N represent true positives, true
negatives, and false positives respectively. For a specific ac-
tivity class 4, precision; is equivalent to % and recall;
is equivalent to #PI@NQ_. w; denotes the corresponding
sample proportion. n. is referred to the number of activity
classes.

The results are shown in Table 2. Test accuracy curves
of our all-MLP models and baseline CNNs are illustrated
in Figure 4. It can be clearly observed that our all-MLP
models can consistently outperform the 3-layer CNNs over
all four HAR benchmarks. According to the results of USC-
HAD, the proposed model significantly exceeds baseline
CNN by 5.04%. In the case of WISDM, OPPORTUNITY and
PAMAP2, the all-MLP models also provide an accuracy gain
of 1.26%, 0.59% and 0.87% over CNN respectively. We also
incorporate the quantitative results in terms of the weighted
F1-score in Table 2. In addition, Table 2 compares our model
with a few popular models. As can be evidently seen, our
all-MLP models perform comparably well or even better
than these representative convolutional architectures and
their variants.

WISDM Comparsion OPPOORTUNITY Comparsion

~
o

50 100

Epoch

150 200

50 100

Epoch

150 200

Fig. 4. Test accuracy curves of all-MLP and CNN on four HAR
benchmarks.

Computation cost: Due to limited computing power
in wearable devices, the inference speed is another key
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TABLE 1
Data prepossessing.

Dataset\Attribute | Categories | Sampling Rate | Channel | Window Size | Overlap Rates | Patch Size
WISDM 6 20Hz 1 200x3 50% 10x3
PAMAP2 12 33Hz 86 120x1 78% 15x1
USC-HAD 12 100Hz 1 512x6 50% 64x3
OPPORTUNITY 18 30Hz 1 30x114 50% 6x19
TABLE 2
Performance comparison on public benchmarks.
\ Benchmarks |  WISDM | OPPORTUNITY | PAMAP2 | USC-HAD |
| | Accuracy(%) | 97.35+0.38 | 90.52+0.13 | 91.26+0.28 | 93.95+0.14 |
\ | Fi-score | 97.16£042 | 9041046 | 9081037 |  9385:023 |
| standard CNNs | parameters(M) | 15 \ 0.8 \ 0.9 \ 0.4 \
\ | FLOPs(M) | 78 \ 40 \ 74 \ 78 \
\ | Accuracy(%) | 98.61:0.32(11.26) | 91.11+0.08(10.59) | 92.13+0.46(10.86) | 98.99+0.21(15.04) |
\ | Fi-score(%) | 98.75:0.28(11.59) | 91.75+0.83(11.34) | 91.99+0.20(11.91) | 98.95+0.11(15.10) |
| all-MLP(Ours) | Parameters(M) | 0.3 | 0.4 | 0.6 | 0.3 |
\ | FLOPs(M) | 6.3 \ 13 \ 6.9 \ 5.6 \
97.2 1 [47] 88.6 T [48] 89.96 T [24] 90.88 T [49]
97.51 o [50] 91.5 1 [20] 90.33 1 [51] 97.8 1 [37]
Relate Researches 98.23 1 [36] 91.57 ¢ [52] 91.0 1 [53] 98.44 1 [40]
98.32 o [54] 92.06 1 [55] 91.66 o [53] 98.93 o [23]

t: Test Accuracy. o: Test Weight F1-score.

evaluation metric in ubiquitous HAR computing scenarios.
Table 2 compares FLOPs and the number of parameters on
the four HAR datasets. Results show that with comparable
classification score, our all-MLP models is much more effi-
cient than convolutional architectures. For WISDM, OPPOR-
TUNITY, PAMAP2, and USC-HAD, our all-MLP models are
theoretically ~ 12.4x, ~ 1.5x, ~ 3.1x, ~ 13.9x faster than
CNNs at much smaller memory overhead. We will evaluate
the actual runtime in Sec 4.4.5. It is worthwhile to note
that the lightweight architecture design makes it suitable
for equipping pure MLPs with HAR applications.

4.4 Ablation Study

We conduct extensive ablation studies to independently
analyze the impact of each component in our all-MLP
model. To be specific, we investigate the influence of several
key hyperparameters such as patch size, channel dimension
and SGU variants on recognition accuracy and computa-
tional complexity. We also visually compare classification
performance by computing confusion matrices. Finally, we
evaluate actual runtime on an embedded Raspberry Pi 3B+
platform.

4.4.1 Model Scale

While not strictly comparable, this motivates us to further
extrapolate the effect of different scales. We compare various
configurations of CNN to our MLPs on the four benchmark
datasets. Figure 5 summarizes the main results, where we
include 1-layer, 2-layer, 3-layer, and 4-layer CNN models
with a different number of kernels, e.g., 16, 32, 64, 128,256
and 512. Similarly, we change our all-MLP model size by

changing the hidden dimension and channel dimension,
whose numbers range from 64, 512 to 256, and 2048 re-
spectively. As the number of layers grows, both MLP’s
and CNN'’s performance steadily improves. Although the
1-layer and 2-layer CNNs attain a reasonable accuracy, it
tends to overfit as the number of kernels increases. The per-
formance of both 3-layer and 4-layer is obviously superior
to that of 1-layer and 2-layer. The figure also reveals that
both 3-layer and 4-layer models achieve very similar values
of classification accuracy. The performance gap between 3-
layer and 4-layer shrinks with model scale, and the rela-
tive improvement is almost negligible. In addition, 3-layer
CNNs runs much faster than 4-layer ones, which is in good
line with recent literature [15], [16], [56]. Considering both
accuracy and computational efficiency, we set the number
of layers to 3 by default. To differentiate, the all-MLP model
results are shown below using a purple dotted line. It can
be seen that the classification score firstly increases then
decreases, and non-monotonically evolves as the hidden
dimension and channel dimension increase. If there is no
extra data augmentation, the classification score is prone
to saturate or even drop, which is an obvious overfitting
phenomenon. In order to better trade off accuracy and
speed, we set the hidden dimension and channel dimension
to be 256 and 768 respectively on WISDM, PAMAP2, USC-
HAD. For OPPORTUNITY, we select 256/1024 for better
classification results. More importantly,our all-MLP model
can easily outperform CNN-based models in a relatively
fair way. Overall, the results support our main claim that in
terms of the accuracy-speed trade-off MLP-like architectures
are more competitive than conventional convolution-like
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of things such as optimizer, learning rate, the number of p. 5 20
. . . . 86
rameters, other architectural details, which potentially affe

the convergence speed of the model. We intuitively suspe
that this case is due to that MLP has fewer parameters so
it may converge faster than CNN at this time. Intuitively,
for the same architecture, smaller model size leads to lower
network capacity and thus convergences faster; vice versa,
a large model size requires a relatively long training time
while keeping other training hyperparameters fixed. In our
work, it should be pointed out that MLP with SGU might
converge slower than CNN. To validate this, keeping the
same model size to ensure fair comparisons, we further eval-
uate the convergence speed of CNN and MLP. As shown in
Figure 6. it is evident that our MLP model converges slower
than the CNN in terms of epochs, which we could attribute
to the effect of SGU because it does not work initially
and only tends to gradually inject cross-patch information
during learning, thus leading to slower convergence. The
results agree well with our expectations.

4.4.2 Kernel Size in CNN

Similarly, we show the comparison with classic CNN-based
models with different kernel sizes. Because it could be an
unfair comparison due to different model sizes, we adjust
the kernel size of CNNs to ensure comparable model per-
formance with the MLP counterparts. In Figure 7, fixing the
number of layers and kennels, we show the influence of
kernel size. It can be seen that our MLP models with much
smaller model complexity still receive comparable or better
results. Overall, the results support our main claim that in
terms of the accuracy-speed trade-off MLP-like architectures
are more competitive than conventional convolution-like
ones on challenging activity recognition tasks.

12x3 15x3

6x3 10x2 8x3
Kernel Size

3x1 4x1

8x1 10x1 15x1
Kernel Size

Fig. 7. The influence of kernel size on accuracy and FLOPs in
CNNs.

4.4.3 Patch Size in all-MLP

In this part, we explore the influence of patch size on
our all-MLP model. We select USC-HAD dataset for our
evaluation. Without loss of generality, we select all four
benchmark datasets for our evaluation. Results are sum-
marized in Figure 8. Interestingly, we find an empirical
relationship between patch size and classification score. For
example, in the case of USC-HAD, it can be seen that FLOPs
rapidly decay from 16.5M to 5.7M ( 3x) when patch size
is increased from 64x1 to 64x3, which indicates that patch
size has an important impact on computational overhead.
As shown in Fig.7, in an extreme case e.g., 16x1 and 128x6,
the classification accuracy has a sudden fall (e.g., 5.41%
and 2.14% respectively) away from the peak. We intend
to provide a reference design as accurate as possible. Al-
though we find that a larger patch size might significantly
decrease computational complexity, we select the patch size
of 64 x 3 to ensure the overall classification score is roughly
unchanged. As a comparison, it is worthwhile noting that
patch size only causes a very small change in the number of
parameters. Overall, the smaller patch size tends to generate
more patches but inevitably raises computational costs. On
the contrary, the larger patch size enjoys higher computation
efficiency, but it is hard to capture finer-level details. Thus,
in contrast, a medium-size scale is more beneficial for cap-
turing fine-grained details, which can still maintain higher
recognition accuracy.
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Fig. 8. The influence of patch size on accuracy and FLOPs in
all-MLP.

4.4.4 SGU Variants

Unlike convolutional architecture with a fixed recep-
tive field, the gating unit, i.e., SGU can handle long-range
interactions between patches from sensor signals, which
enables suitable and irregular receptive fields. The OP-
PORTUNITY challenge is used in the evaluation, which
is very typical for HAR application scenarios due to its
imbalanced class distributions. From a macro perspective
of the overall structure (also see Figure 1), our proposed
model primarily includes both channel projections (MLP)
and Spatial Gating Unit (SGU), which accepts a sequence of
linearly projected patches shaped as a “patches x channels”
as an input. To isolate the effect of SGU, we further provide
an ablation study by removing it from our model, where
only channel projections are stacked through MLPs. The
comparison result denoted as “Without SGU” is presented
in Table 3. It can be seen that such pure MLP achieves
an accuracy of 90.14%, which is behind the state-of-the-art
CNN model, as well as our MLP with SGU. We conclude
that the presence of this extra SGU module is related to
the performance gap, because it is capable in allowing
communication across patches other than linear projections
that only allow communication across channels. These two
types of operations, i.e., SGU and linear projection are inter-
leaved to enable interaction of different input dimensions.
The results support our main claim that our MLP model is
competitive with mainstream conventional neural network
architectures in terms of the accuracy-cost trade-off, which
are also consistent with previous observations.

In order to adequately quantified the effectiveness of
SGU, we replace SGU with its three variants and the details
of their architectures are illustrated in Figure 9. We compare
the performance of these SGU variants. In (a), SGU is the
gating unit used in the above main experiments. As a
comparison, (c) is a larger SGU without spilt, which can be
represented as s(X) = X ® f(X). SGU also has a close con-
nection with GLU [28]. (b) is similar to GLU and their main
difference lies in that we substitute the sigmoid activation
and normalize only one branch, where the output can be

FLOPs(M)

9

represented as s(X) = f1(X) ® f2(X). If we further remove
the normalization in (b), it will degenerate into (d), which
can be called “bilinear” in [57]. Results are illustrated Table
3. In particular, we can find that it would be more efficient
to split the X in the aforementioned formulation (i.e., Eq. 6)
into two independent parts (X1, X») along the channel di-
mension, and then perform the element-wise multiplication
in the gating function: s(X) = X; ® f(Norm(Xs)). It can
be seen that SGU with split performs on par with the one
without split in terms of accuracy, where the performance
gap between them is almost negligible. Therefore, to strike
a better accuracy-cost trade-off, it is always recommended
to adopt SGU with split in this paper since it can perform
comparably well but at a smaller computational cost.
Moverover, we empirically find that it is critical to initial-
ize W as near-zero values and b as ones in (f(-)) to ensure
training stability. Such initialization can force the model to
behave like a regular FFN at the beginning of learning, in
which each patch can be independently processed, and then
gradually inject spatial information across patches during
the stage of training. As is shown in Table 4, SGU without
weight initialization will have worse performance and in-
stability. Specifically, the models without SGU initialization
have worse classification accuracy across all four HAR
datasets. Moreover, the training will be unstable since the
results show higher variance over several independent runs.

[ Linear Proj. ] [ Linear Proj. ]

)

(b) SGU with two projection

|

[ Linear Proj. ] [ Linear Proj. ]

0

e
f

(c) SGU without split

(d) Bilinear

Fig. 9. The architectures of SGU variants.

4.4.5

To evaluate the effectiveness of our MLP architectures, we
conduct leave-one-subject-out cross-validation. It is a special
case of k-fold cross-validation, where one person is treated
as one-fold. Hence, the number of persons decides the num-
ber of folds. Using leave-one-subject-out cross-validation for
performance evaluation of CNN and MLP requires rather
expensive computation. Without loss of generality, we select

Leave-one-out Cross Validation
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TABLE 3
Performance comparisons of SGU variants.

| Benchmark | OPPORTUNITY |
| Module | Accuracy(%) | Para. | FLOPs |
| Without SGU | 90142017 | 056M | 167M |
| SGU | 91112008 | 0.43M | 133M |
| SGU with two projection | 90.16£0.05 | 0.56M | 18.7M |
| SGU without split | 9116+0.11 | 0.56M | 17.8M |
| Bilinear | 89.7040.07 | 056M | 185M |
TABLE 4

Performance comparisons of SGU initialization.

Dataset WISDM PAMAP2 OPPO USC-HAD
w/o initialization =~ 97.75+0.24 91.02+0.33  90.80+0.28  97.85+0.29
w/ initialization 98.21+0.24  92.15+#0.24 91.13#0.13  98.98+0.08

PAMAP?2 dataset for our evaluation. Because nine persons
take part in this data collection, the number of folds will
be set to 9. Thus, we perform 9-fold cross-validation, where
the network will be trained on eight subjects and tested on
one “left out” subject at each time. That is to say, every
individual subject will be treated as a “test” set in turn.
The average macro Fl-scores with 95% confidence intervals
are utilized as a metric to evaluate the robustness of the
model. Table 5 summarizes our results. It can be clearly
observed that MLP could produce a stable performance
gain, which surpasses the standard CNN by 1.2% in terms
of the averaged accuracy in a computation-saving scenario.

TABLE 5
Average macro F1-scores with 95% confidence intervals obtained in
Leave-one-out Cross Validation on PAMAP2.

| Subject\Model | CNNs | al-MLP |
|  Subject1 | 90.20+0.93 | 90.58+1.15 |
|  Subject2 | 7422+0.17 | 74.76+0.31 |
|  Subject3 | 82.48+0.73 | 83.45+0.67 |
|  Subject4 | 94.47+0.34 | 93.10+0.29 |
|  Subject5 | 97.39+0.45 | 96.89+0.32 |
|  Subject6 | 90.80+0.41 | 91.92+0.72 |
|  Subject7 | 95.60+0.06 | 95.60+0.02 |
|  Subject8 | 90.28+2.78 | 98.61+1.39 |
|  Subject9 | 91.92+0.07 | 92.51+0.18 |
| overall | 89.60+0.66 | 90.82+0.56 |

4.4.6 Confusion Matrices

We visually compare the confusion matrix of all-MLP with
CNNs. Datasets including PAMAP2 and OPPORTUNITY
are selected for our evaluation, which is universally rec-
ognized as a realistic and challenging activity recognition
task. Results are shown in Figure 10. The x-axes represent
the predicted activity labels and the y-axes represent the
real activity labels, while the diagonal values illustrate the
number of samples to be recalled. The figure shows that

10

the 3-layer normal CNN makes lots of misclassification
(e.g.,76) when distinguishing the two types of activities
‘Walking’ and ‘Rope Jumping’, which can be attributed
to the fact that two similar activities can produce very
close waveform signals. It is apparent that our all-MLP
model is better at discriminating very similar activities than
convolutional architecture. In particular, the misclassified
samples are significantly reduced from 76 to 48, which
proves the robustness and effectiveness of our all-MLP
model in the HAR scenario. Actually, the OPPORTUNITY
dataset is extremely imbalanced, as the Null class represents
more than 75% of all examples. Thus, it is relatively hard
to illustrate performance gain by the confusion matrices
with different colors. Hence, excluding the Null class, we
further compute the confusion matrices on OPPORTUNITY
dataset. Note that confusion between ‘Open Drawer 1’ and
‘Open Drawer 2’ is high. It can be observed from Figure 11
that many of the misclassifications occur between the two
activities, which is due to that they are relatively similar.
The results show the superiority of our MLP architectures.
In essence, CNN tends to extract local features extremely
well, but it cannot capture long-range interactions. Thus,
the proposed all-MLP architecture can handle long-range
interactions, which provides a better alternative to sense the
whole waveform of sensor signals.

4.4.7 Test on Mobile Platform

Besides indirect metric like FLOPs, the direct metric such
as inference speed should be considered in network ar-
chitecture design. Thus, we evaluate the actual inference
time of our all-MLP model on a resource-constrained em-
bedded device. Since the Raspberry Pi system has a good
combability with the PyTorch deep learning library, we
chose the Raspberry Pi 3 Model B with ARM Cortex-A53
and SDRAM as our test platform. In order to evaluate the
efficiency of the proposed model, we compare our all-MLP
model with CNN in terms of inference speed. The patch
size is set to 10 x 3. Both models are trained with WISDM
dataset and then deployed on the Raspberry Pi platform.
A Raspberry Pi-based application is developed for real-time
activity recognition. The graphic user interface is written
in Python and its three screenshots is illustrated in Figure
12. It presents the probability of the predicted activities
and inference time. We average the inference time of 500
random samples from the test set and the results are shown
in Figure 13. The averaged inference time by CNN takes
around 119ms per window, while our all-MLP model takes
only 30ms per window, which can significantly speedup the
inference process. Specifically, under a higher classification
score, it can be seen that every ~ 12.4x theoretical speedup
often leads to ~ 4x actual speedup in our implementation
due to memory access and other overheads. This actual
speedup is partly attributed to all-MLP’s simple design of
architecture. In summary, our all-MLP model involved in
only matrix multiplication can provide an actual speedup
for activity inference at a much smaller memory footprint,
which is very suitable for practical HAR deployment in
wearable devices.
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Fig. 10. Performance comparsion on PAMAP2 dataset using
Confusion Matrices.

5 CONCLUSION

Current research hotspot in learning architectures is return-
ing to MLPs. In this paper, we first present a novel all-
MLP architecture for HAR tasks based on wearable devices.
The proposed architecture is entirely built by a set of MLP
layers with a gating unit, without relying on any convolu-
tional architecture. By dividing multi-channel sensor time
series into nonoverlapping patches, all linear layers directly
process sensor patches to extract local features, thereby
decreasing computational overhead. The new architecture
is simpler than CNN, which can easily handle sensor data
structures. Through experiments conducted on four HAR
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Fig. 11. Confusion Matrices of OPPORTUNITY dataset.

benchmarks, we compare our all-MLP model with standard
CNNs and other representative convolutional architectures.
The experimental results show the proposed model can pro-
vide compelling results for activity recognition meanwhile
greatly reducing computational complexity. It takes fewer
FLOPs and parameters but achieves a comparable or higher
classification score. We also conduct extensive ablation stud-
ies to prove the advantage of all-MLP model. Moreover,
the computations of all-MLP only involve matrix multipli-
cations, which can be readily optimized via using popu-
lar deep learning libraries, e.g., TensorFlow and PyTorch.
This additional benefit indicates that our all-MLP model is
hardware-friendly and can promote practical deployment in
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resource-constrained wearable devices. We further evaluate
actual inference speed on a Raspberry Pi platform, which
shows that it can achieve ~ 4x actual speedup with higher
accuracy over standard CNN. All in all, the proposed HAR
model has a simple network structure and fast inference
speed throughput. We conclude the new architecture is not
a simple reuse of traditional MLPs, but is a significant evo-
lution over them. Therefore, it deserves deeper investigation
to explore the potential of such architectures to the greatest
extent. We hope this work could encourage future work of
network architecture design for wearable-based HAR with
MLPs, which is platform-friendly and more practical.
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