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During the past decade, human activity recognition (𝐻𝐴𝑅) using wearable sensors has become a new research
hot spot due to its extensive use in various application domains such as healthcare, fitness, smart homes
and eldercare. Deep neural networks, especially convolutional neural networks (𝐶𝑁𝑁𝑠) have gained a lot of
attention in𝐻𝐴𝑅 scenario. Despite exceptional performance,𝐶𝑁𝑁𝑠 with heavy overhead is not the best option
for 𝐻𝐴𝑅 task due to the limitation of computing resource on embedded devices. As far as we know, there are
many invalid filters in 𝐶𝑁𝑁 that contribute very little to output. Simply pruning these invalid filters could
effectively accelerate𝐶𝑁𝑁𝑠 , but it inevitably hurt performance. In this paper, we first propose a novel𝐶𝑁𝑁 for
𝐻𝐴𝑅 that uses filter activation. In comparison with filter pruning that is motivated for efficient consideration,
filter activation aims to activate these invalid filters from an accuracy boosting perspective. We perform
extensive experiments on several public 𝐻𝐴𝑅 datasets, namely UCI-HAR (UCI ), OPPORTUNITY (OPPO),
UniMiB-SHAR (Uni), PAMAP2 (PAM2), WISDM (WIS) and USC-HAD (USC) which show the superiority of
the proposed method against existing state-of-the-art (SOTA) approaches. Ablation studies are conducted
to analyze its internal mechanism. Finally, the inference speed and power consumption are evaluated on an
embedded Raspberry Pi Model 3 B plus platform.

CCS Concepts: •Human-centered computing→ Ubiquitous and mobile computing; Ubiquitous and mobile
devices; Mobile devices.
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1 INTRODUCTION
1.1 Background
During the past decade, with rapid development of sensor and Internet of Thing technology, human
activity recognition (𝐻𝐴𝑅) [1–3] using wearable sensors such as accelerometer and gyroscope has
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become a new research trend. Due to its obvious advantages (e.g., smaller size, lower price, portabil-
ity) over other sensor modalities such as camera, such sensors have been extensively leveraged to
recognize human activities, which plays a vital role in wide range of application domains [4–9] such
as health-care, sport tracking, smart home and game console designing. In principle, sensor-based
𝐻𝐴𝑅 can be treated as a multivariate time series classification problem, which can be handled
by conventional machine learning algorithms such as naive Bayes networks and support vector
machines in combination with heuristic handcrafted features, e.g., variance, mean value, and other
statistics in temporal or frequency domain. However, such heuristic handcrafted features rely
on expert experience or domain knowledge, which requires expensive human intervention and
generally lacks scalability for a large range of activity recognition tasks.
Recent years have witnessed significant advances in Deep Learning (𝐷𝐿) community [10]. It

is worthwhile mentioning that convolutional neural networks (𝐶𝑁𝑁𝑠) [11–13] have made major
breakthroughs in𝐻𝐴𝑅 area, which become a favorable deep learning architecture due to an obvious
advantage of automatic feature extraction. For example, Zeng et al. [14], Ronao et al. [15] and Yang
et al. [16] at the earliest time adopted 𝐶𝑁𝑁 over multivariate time series to perform 𝐻𝐴𝑅 tasks,
where convolutional filters can be directly applied along multimodal sensor signals to capture
local dependencies. Ravi et al. [17] and Jiang et al. [18] proposed an efficient 𝐻𝐴𝑅 method with
the use of 𝐶𝑁𝑁 performed on the spectral domain of sensor data. Kim et al. [19] introduced an
interpretable 𝐶𝑁𝑁 , which uses group 𝐿𝐴𝑆𝑆𝑂 method to produce sparse convolution filters for
selecting important sensor signals. Ignatov et al. [20] utilized𝐶𝑁𝑁 for𝐻𝐴𝑅 to automatically extract
discriminative features, which is combined with handcrafted features to preserve global information
about sensor time series. Gao et al. [21] proposed a three-layer 𝐶𝑁𝑁 to handle smartphone-based
inertial sensor data for 𝐻𝐴𝑅, which performs considerably better than conventional machine learn-
ing algorithms on two standard 𝐻𝐴𝑅 benchmarks. Ordóñez et al. [22] proposed a hybrid model
called 𝐷𝑒𝑒𝑝𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 , which combines 𝐶𝑁𝑁𝑠 and 𝐿𝑆𝑇𝑀𝑠 to simultaneously capture local and
global features for 𝐻𝐴𝑅. Despite exceptional performance, deep 𝐶𝑁𝑁𝑠 with heavy computational
overheads are not the best choice for 𝐻𝐴𝑅 task, due to the limitation of computing resource on
embedded devices.

1.2 Motivation of our research
Actually, deep 𝐶𝑁𝑁𝑠 are severely restrained for 𝐻𝐴𝑅 applications, which is mainly because the
computational cost caused by stacked convolutional layers is not affordable for embedded devices.
Recently, many researches have been devoted to investigating how to prune or compress convolu-
tional networks. As mentioned above, filter is a core component in modern 𝐶𝑁𝑁𝑠 . [23] shows that
there are more or less unimportant filters (invalid filters) in𝐶𝑁𝑁 . [24] adopts feature boosting and
suppression (𝐹𝐵𝑆) to skip invalid filters during training stage. Generally speaking, these invalid
filters affect and contribute far less to output. So far, most investigations [25, 26] have been confined
to detect these invalid filters and prune them for efficient inference, which aims to maintain model
performance [27]. However, simply pruning such invalid filters [24] might hurt the generality
ability of deep 𝐶𝑁𝑁𝑠 , which is not the best choice for 𝐻𝐴𝑅 task. It still remains unclear whether
these invalid filters can be transformed into valid ones for improving final recognition performance.
The similar story also takes place in the ensemble learning arena, in which a weak classifier

can be lifted or boosted by the combination with other weak classifiers. Motivated by an idea of
ensemble learning like boosting [28], it is conjectured that these invalid filters may be once more
useful and contribute much to activity prediction. Although a single invalid filter is week or poor,
their mutual enhancement is sometimes able to produce significant information gain. From an
accuracy boosting perspective, it deserves deeper investigation whether such weak filters within
one network can be lifted by incorporating other weak filters from external networks. That is to
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say, it is possible that these invalid filters can be reactivated again by absorbing useful information
from external networks, which can at the same time preserve the same network structure as before.
As a result, such invalid filters can be turned into valid ones after activating operation, which leads
to a considerable performance improvement without incurring extra computational burden, hence
being vital for 𝐻𝐴𝑅 according to lightweight property.

1.3 Key contributions
This paper aims to explore the potential of reactivating such invalid filters for 𝐻𝐴𝑅. Taking an
inspiration from ensemble learning [28], we for the first time propose a new 𝐶𝑁𝑁 that performs
filter activation in ubiquitous 𝐻𝐴𝑅 scenario. Instead of simply pruning invalid filters, we prefer
to reactivating them via absorbing useful information from other networks (external), where the
information source used to activate invalid filters needs to be selected carefully. Because it is unre-
alistic to simultaneously deploy multiple deep models on embedded devices for efficient inference,
directly adopting ensemble learning is infeasible for 𝐻𝐴𝑅. Therefore, we propose to train multiple
networks in parallel with the same number of layers and filters across every layer, which are
initialized through different hyper-parameters for raising diversity. Specifically, an entropy-based
measure is used to carefully select meaningful filters from external networks to replace such invalid
filters of internal network. An adaptive weighting strategy is used to share information (weights)
among multiple networks. In particular, the filter activation is performed in layer level rather
than filter level. The main advantages of this paper are summarized as follows: Instead of filter
pruning, we develop a new 𝐶𝑁𝑁 for 𝐻𝐴𝑅 that aims to reactive such invalid filters by absorbing
useful information from outside networks, hence leading to a significant performance gain. In
comparison with ensemble learning, this filter activation approach requires only one network
instead of multiple networks to be deployed on resource-restrained embedded devices, which is
more suitable for activity inference in terms of lightweight property. At negligible computational
burden, the filter activation approach can be flexibly plugged into current 𝐶𝑁𝑁𝑠 that without
altering network structure.
In addition, we highlight the novelty of the work by comparing filter activation against three

popular machine learning approaches. We thoroughly investigate the differences between them,
which are summarized in Table 1: 1) The proposed approach is very similar to transfer learning,
which also aims to transfer information between networks. However, transfer learning is a ‘two-
step’ process, which need a retraining process with supervision for fine-tuning. The difference
between filter activation and transfer learning lies in that filter activation is a ‘single-stage’ process
without the retraining process; 2) The research motivation of filter activation is opposite to pruning.
The difference between filter activation and filter pruning lies in that filter activation involves
training multiple networks, which does not need to modify network structure. Filter activation
can yield a significant performance gain by absorbing useful information from outside networks
and meanwhile maintaining almost the same inference speed; 3) The filter activation inherits an
idea ensemble learning, and both of them involve training multiple networks in parallel. While
for filter activation, inference is completed with only one network rather than multiple networks,
which is more efficient. It utilizes an entropy-based measure to select meaningful filters and transfer
information between multiple networks by calculating the weighting coefficient adaptively.
The rest of this paper is organized as follows. In Section 2, we review related works. Section 3

introduces an overview of the proposed method. In Section 4, the details of experiment setting are
presented, and we then conduct extensive ablation studies on various benchmark datasets. Main
results are discussed. Finally, we draw a conclusion in Section 5.
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Table 1. Difference between several methods

Methods Without modifying
structure One stage Without supervision Inference using

one network
Filter pruning No Yes Yes Yes

Transfer learning Yes No No Yes
Ensemble learning Yes Yes No No
Filter activation Yes Yes Yes Yes

2 RELATEDWORKS
Filter Pruning and Activation. Especially in computer vision field, many researchers have put
their sight on filter pruning for model compression. In order to speed up network’s inference, [23]
prunes invalid filters by 𝑙1-norm criterion. [24] apply pruning technique during training stage
to slim network structure. [29] proposes to use spectral clustering to detect invalid filters. [25]
reduces the convolutional layer’s redundancy via subspace clustering technique. [30] discovers that
the invalid filters can be reactivated to produce more powerful feature representations in visual
recognition tasks. In wearable 𝐻𝐴𝑅 scenario, [26] designs a multi-sensor fusion with ensemble
pruning system (MSF-EP). This system transforms the problem of multiple sensors configuration
into the problem of multi-classifier ensemble pruning. The shortcoming of filter pruning is that
it simply removes the unimportant (invalid) filters, which inevitably hurts the generality ability
of deep 𝐶𝑁𝑁𝑠 . On the contrary, filter activation aims to re-activate such invalid filters instead of
simply pruning them, which can further lift model performance. In addition, compared to pruning,
filter activation does not need to modify network structure.

Attention mechanism. Attention mechanism has been widely used to pay more attention to
these valid and meaningful filters. In order to investigate related temporal features, [31] discusses
attention mechanism in 𝐻𝐴𝑅 research and treat it as a data-driven method. [32] locates and clas-
sifies weakly labeled sensor data via applying attention on 𝐶𝑁𝑁 . [14] uses continuous attention
to improve recurrent network’s performance in 𝐻𝐴𝑅 tasks. [33] presents a framework based on a
bran-new combination of 𝐶𝑁𝑁 attention mechanism and Gated Recurrent Unit (𝐺𝑅𝑈 ) network.
This framework can capture both spatial and temporal features, in which attention mechanism can
enlarge the influence of these valid filters. The difference between filter activation and attention
mechanism is that attention mechanism treats these invalid filters as useless information, which
ignores these invalid filters’ potential effect. Instead, filter activation make such invalid filters
become once more useful by absorbing useful information from outside networks, which can fully
exploit their potential.

Distillation, Mutual and Ensemble learning. In order to absorb useful information from
outside, filter activation need to train multiple networks at the same time, which is very similar to
distillation, mutual [34] and ensemble learning [28] at this point. However, distillation generally
requires two stages to train a teacher model and a student model respectively, which then enables
the teacher model to guide the training process of the student model. While for filter activation,
it only needs to perform one stage to train multiple networks in parallel. The obvious difference
between mutual learning and filter activation is that mutual learning need an additional mutual
loss in the learning process in order to supervise multiple networks to learn from each other. While
for filter activation, it does not require this supervised loss. In addition, it is worth mentioning
that filter activation is performed at every epoch instead of iteration steps, which can decrease
communication cost among networks compared to mutual learning. [28] proposes a novel ensemble
extreme learning machine technique for 𝐻𝐴𝑅 using smartphones. Filter activation has obvious
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advantages over [28], which is more lightweight and only needs to deploy a single network on
embedded systems. The shortcoming of ensemble learning lies in that it has to deploy multiple
networks during inference stage, which is computationally expensive for embedded devices. While
for filter activation, inference requires only one network to be deployed, which performs better
than ensemble learning in light of lightweight property.

3 MODEL
In this section, we introduce our model in details. In 3.1, we present an overview of the proposed
method in 𝐻𝐴𝑅 scenario with filter activation. In 3.2, we first explore how to select more useful
information source to reactivate invalid filters. In 3.3, we discuss two criteria in order to measure
the filter’s information. In 3.4, we study how to perform filter activation in two-network case. In
3.5, the activation algorithm is further extended to multi-network case.

3.1 Overview
Activity recognition can be seen as a typical multivariate time series classification problem, where
data preprocessing is one crucial step that might have an essential impact on classification perfor-
mance. There are several main preprocessing procedures that are commonly used to transform
multimodal sensor data before feeding them into one classifier, including filtering noise, handling
missing value, standardization, and segmentation. We will detail each of them as follows. Denois-
ing: A 3𝑟𝑑 order Butterworth low-pass filter with the cutoff frequency, i.e., 20 𝐻𝑧 is often adopted
to remove the impact of noise on raw sensor data. Besides, another Butterworth low-pass filter
with the cutoff frequency, i.e., 0.3 𝐻𝑧 is applied over accelerometer time series to further separate
the gravitational and body motion components. Handling missing value: Difference sensors
placed over different body positions can generate multi-dimensional time series data at a constant
frequency, which is used to monitor human activities. Such sensor readings are easily missing
because of sensor malfunction. A simple method is to directly discard these samples with missing
values, which will compromise classification accuracy. An alternative is to use interpolation method
that assumes the missing readings are close to the nearest measurements. More methods can be
acquired in the literature [35], which rely on the sensor modalities used and the activities of interest.
Standardization: Due to heterogeneous sensor modalities, it usually needs to scale raw sensor
data into a certain range, which enables deep models to converges faster. Standardization is a
mainstream rescaling method to normalize input samples by subtracting the mean and dividing
the standard deviation, which may effectively avoid influence of outliers. It is worth noting that
the preprocessing should only be performed on the training set, which is then conducted over
the validation or test set. Segmentation: Unlike image data, a single sensor reading is hard to
represent the characteristics of a specific activity. According to the continuity of sensor time series,
the sliding window technique with a fixed window length has been widely used to segment the
steaming sensor data into sequences, where an overlap rate between adjourning windows are
generally required to maintain the continuity of sensor data. All produced sequences are then fed
into deep models for final classification. We present an entire overview of the proposed method, as
shown in Fig.1.

3.2 Activation Information source
How to select more useful information source is one key step. In this part, we introduce three ways.
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Fig. 1. The overview of the proposed 𝐻𝐴𝑅 method with filter activation. The curves are sensor
time series.

3.2.1 Gaussian Noise Activation. Because Gaussian noise has been extensively leveraged to
boost the performance of 𝐶𝑁𝑁 during weight initialization [10], we may select Gaussian noise
𝑁 (0, 𝜎𝑡 ) as the information source to replace invalid filters. These invalid filters contribute less
to the output, and their 𝑙1-norm is often smaller than that of valid filters. Fig.2 is the sketch map
of selecting Gaussian noise as information source. After Gaussian noise activation, these invalid
filters can acquire a larger 𝑙1-norm and produce more contribution to output. If there is too much
noise, the model might have trouble in convergence. Thus, we have to decrease 𝜎𝑡 along with time.

𝜎𝑡 = 𝛼𝑡 (0 < 𝛼 < 1) (1)

Fig. 2. Gaussian Noise Activation

3.2.2 Internal Activation. This method performs filter activation within a single network, in
which these valid filters that have larger 𝑙1-norm are selected as information source. We use the
valid filters to activate the invalid filters (have smaller 𝑙1-norm). To be specific, all filters are first
sorted according to 𝑙1-norm. To perform the internal activation, we set a threshold 𝛾 . The filters
are treated as invalid filters if their 𝑙1-norm is smaller than 𝛾 , while other filters are seen as valid
ones. Then we replace the i-th smallest filter’s weights with the i-th biggest filter’s ones. Fig.3 is the
sketch map of internal activation. Although these invalid filters have been activated and have more
effect to output, the internal activation could not provide any new information gain [25, 30, 31] to
network since their information source is internal filters.
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Fig. 3. Internal Activation

3.2.3 External Activation. In order to overcome the shortcomings of Gaussian noise and internal
activation, we adopt external filters as information source. For simplicity, we first discuss two-
network case, where the network 𝑀1 and 𝑀2 are trained in parallel. During training stage, the
external activation method utilizes𝑀1’s valid filters as information source to replace𝑀2’s invalid
filters. Compared with internal activation, external activation has two adjustments:

• Although two networks with the same structure are trained in parallel, the locations of the
filters across the same layer are possibly different. Because there is no one-to-one mapping between
filters, it is hard to align the different filters within a layer in the filter activation process. Since
the two networks have different initialized weights and locations of invalid filters [28, 30, 36],
the simple activation operation in filter level may hurt the layer’s consistency. Thus we conduct
external activation in a layer level. All of 𝑀1’s meaningful filters in a certain layer are used to
activate𝑀2’s invalid filters at the same layer (also𝑀1 to𝑀2). After external activation, the mutual
information can be learned from each other by𝑀1 and𝑀2.

•We weight the internal and external information along with the external activation:

𝑊
𝑀′

2
𝑖

= 𝛼𝑊
𝑀2
𝑖

+ (1 − 𝛼)𝑊𝑀1
𝑖

(0 < 𝛼 < 1) (2)

where𝑊𝑀2
𝑖

is the weights of 𝑀2 in the i-th layer and𝑊𝑀1
𝑖

is the weights of 𝑀1 in the i-th layer.
Assuming that𝑊𝑀1

𝑖
is less informative than𝑊𝑀2

𝑖
, 𝛼 should be larger than 0.5 and vice versa.

External activation between two networks is shown in Fig.4 and Eq.2. Fig.4 helps to explain filter
activation’s two critical problems: 1) how to measure𝑊𝑀1

𝑖
and𝑊𝑀2

𝑖
’s information; 2) how to choose

𝛼 (weighting coefficient). These problems will be discussed in the following Section 3.
In order to raise two network’s diversity, we deliberately initialize two networks differently and

set their hyper-parameters (e.g., optimizer, learning rate...) to be different from each other [36],
which make the two networks have different weights. In the two-network case, it is worthwhile to
mention that after activation operation the two networks’ weights will be the same if the activation
is only implemented at each epoch. At other iteration steps, their weights are still different from
each other due to the diversity. In 3.5, the phenomenon will disappear when it is extended to
multi-network case.
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Fig. 4. External Activation between two networks

3.3 Filter or layer Information’s Calculating Criteria
In this part, we discuss two information calculation criteria in the level of filter and layer respectively.

3.3.1 𝑙1-norm. 𝑙1-norm is used tomeasure filter’s information in previous sections.𝑊𝑖, 𝑗 ∈ R𝑁𝑖×𝐾×𝐾

represents j-th filter’s weight at the i-th layer. 𝑁𝑖 is the number of filters (in i-th layer). The𝑊𝑖, 𝑗 ’s
𝑙1-norm is expressed as follows:

| |𝑊𝑖, 𝑗 | |1=
𝑁𝑖∑
𝑛=1

𝐾∑
𝑘1=1

𝐾∑
𝑘2=1

|𝑊𝑖, 𝑗 (𝑛, 𝑘1, 𝑘2) |. (3)

𝑙1-norm is widely used as layer or filter information’s calculating criteria. However, it is not always
true that smaller norm has less importance [24, 29]. For example, all 1 filters sometimes perform
worse than the filters arranged from 0 to 1 regularly. [23] shows that the 𝑙1-norm’s use must meet
certain pre-requisite. That is to say, filter activation according to 𝑙1-norm may deteriorate valid
filters.

3.3.2 Entropy. The above disadvantages can be attributed to the reason that 𝑙1-norm only pay
attention to the absolute value of filter’s weight and ignores its variation. Thus, we need to direct our
attention to the weight’s variation. Assuming𝑊𝑖, 𝑗 (𝑛, 𝑘1, 𝑘2) = 𝑎 for𝑛 ∈ {1, ..., 𝑁𝑖 },𝑘1, 𝑘2 ∈ {1, ..., 𝐾},
all single values in𝑊𝑖, 𝑗 are identical. That is to say, every part of an input has an equal contribution
to output under normal convolution operation. Regardless of absolute value of 𝑎, the filter loses
its ability to find more important part of an input. Thus, we decide to measure weight’s variation
instead of its absolute value. We transform discrete distribution from continuous distribution. The
range of value is divided into𝑚 bins. Referring to related literature [26, 30], we can calculate each
layers’ weight𝑊𝑖 ∈ R𝑁𝑖×𝑁𝑖+1×𝐾×𝐾 as a whole to protect the consistency among layers:

𝐻
(
𝑊𝑖, 𝑗

)
= −

𝐵∑
𝑘=1

𝑝𝑘 log𝑝𝑘 (4)

in which 𝐵 and 𝑝𝑘 denote the amount of bins and the probability of bin 𝑘 respectively.
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3.4 Activation’s Adaptive Weighting
In this part, two networks’ weights from Eq.2 are weighted by an adaptive weighting strategy.𝑊𝑀1

𝑖

is the weight of layer 𝑖 in network𝑀1. 𝐻
(
𝑊

𝑀1
𝑖

)
denotes the information of the layer in network

𝑀1 and we can calculate 𝐻
(
𝑊

𝑀1
𝑖

)
according to Eq.4. Calculating the coefficient 𝛼 needs to meet

two conditions:
• If 𝐻

(
𝑊

𝑀1
𝑖

)
= 𝐻

(
𝑊

𝑀2
𝑖

)
, Eq.2’s 𝛼 should be 0.5. If 𝐻

(
𝑊

𝑀1
𝑖

)
< 𝐻

(
𝑊

𝑀2
𝑖

)
, 𝛼 needs to larger than

0.5.
• Either 𝐻

(
𝑊

𝑀1
𝑖

)
< 𝐻

(
𝑊

𝑀2
𝑖

)
or 𝐻

(
𝑊

𝑀1
𝑖

)
> 𝐻

(
𝑊

𝑀2
𝑖

)
, every network must contribute to their

own inherent information.
An adaptive weighting coefficient [23, 30] is applied to meet the above two requirements:

𝛼 = 𝐴 ×
(
arc tan

(
𝑐 ×

(
𝐻

(
𝑊

𝑀2
𝑖

)
− 𝐻

(
𝑊

𝑀1
𝑖

))))
+ 0.5 (5)

where𝐴 and 𝑐 in Eq.5 are a pair of fixed hyper-parameters to calculate weighted coefficient. In Fig.5,
we visualize the function that successfully meets two above requirements.

Fig. 5. Adaptive Weighting Coefficient

3.5 Multiple Networks’ Activation
In this part, this two-network case can be easily extended tomultiple-network case.We trainmultiple
networks in parallel. During each training epoch, all these networks can exchange information from
each other in a circular way, i.e., 𝑀1 → 𝑀2 → · · ·𝑀𝑘−1 → 𝑀𝑘 → 𝑀1, as illustrated in Fig.6. For
example, the network𝑀𝑘−1 gives out its information to𝑀𝑘 by using𝑊𝑀𝑘−1

𝑙
to update𝑊𝑀𝑘

𝑙
, where

the above adaptive weighting strategy can be used to calculate the weighting coefficient between
them. Every network is able to fully absorb useful information from other outside networks after a
specific number of training epochs. Though different training hyper-parameters are used to raise
diversity, the performance of each network still tends to be very close to each other under external
activation. Without loss of generality, the first network is always chosen to be deployed in the
multi-network setting. Overall, we develop a new filter activation algorithm for activity recognition
where we propose an entropy-based criterion and adaptive weighting strategy to perform filter
activation in layer level rather than filter level, as presented in Algorithm 1.
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Fig. 6. Multiple Networks’ Activation

Algorithm 1 External Activation
Input:
1: 𝐾 : Number of Networks;𝑀1 to𝑀𝑘 : The 1𝑠𝑡 to 𝑘𝑡ℎ networks;
2: 𝐿: Number of Layers; 𝑁𝑇 : Each epoch’s iteration number;
3: N ∈ {1, · · · , 𝑁max}: Iterations of training;
4: 𝑊𝑀𝑘

𝑙
: Initial Weight of 𝐿 layers in 𝐾 networks;

5: 𝜆𝑘 : Hyper-parameters of 𝑘 networks; D: Training Set
6: for N in range (1, 𝑁max) do
7: for 𝑘 in range (1, 𝐾 ), 𝑙 in range (1, 𝐿) do
8: On the base of D with 𝜆𝑘 , update𝑊𝑀𝑘

𝑙
;

9: if N // 𝑁𝑇=0 then
10: Calculate weight coefficient 𝛼 according to Eq.5;
11: 𝑊

𝑀𝑘

𝑙
= 𝛼𝑊

𝑀𝑘

𝑙
+ (1 − 𝛼)𝑊𝑀𝑘−1

𝑙

12: end if
13: end for
14: end for

4 EXPERIMENT
In this section, we introduce our experiments in details. 4.1.1 presents our experimental setup. In
4.1.2 and 4.1.3, several benchmark 𝐻𝐴𝑅 datasets and evaluation metrics we use are introduced. We
discuss the quantitative comparisons in 4.1.4. In 4.2, we conduct further ablation study.

4.1 Experimental setup
4.1.1 Network’s setup. After taking the balance of classification accuracy and computational
burden into consideration, we choose several 3-layer 𝐶𝑁𝑁𝑠 as our backbones. In order to proceed
a fair comparison, we set each method’s hyper-parameters to be the same. We select Adam as
optimizer. For the baseline model, the learning rate is 1𝑒−4 and it decays to 95% at every 10 epochs.
The number of epoch is 200 because we find that too few epoch makes models hard to converge and
the test accuracy tends to be stable after 150 epochs. The batch size is different according to various
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datasets. We select a Rectified Linear Unit (𝑅𝑒𝐿𝑈 ) as activation function. After 3 convolutional
layers are Full Connect (𝐹𝐶) layer and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 . We choose PyTorch as deep learning framework.
All the experiments are conducted on a server for deep learning (OS: Ubuntu 20.04; GPU: 24 GB
GeForce RTX 3090; CPU: 6th Gen Intel i7-6850K ; RAM: 64 GB). More details of our networks are
illustrated in Table 2, where 𝐶 (𝐿𝑠 ) means the convolutional layer has 𝐿𝑠 feature maps.

Table 2. Network’s details

Dateset 1𝑠𝑡 Layer 2𝑛𝑑 Layer 3𝑟𝑑 Layer 𝐹𝐶, 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
UCI 𝐶 (64) 𝐶 (128) 𝐶 (256) ✓
OPPO 𝐶 (64) 𝐶 (256) 𝐶 (384) ✓
Uni 𝐶 (64) 𝐶 (256) 𝐶 (384) ✓
PAM2 𝐶 (128) 𝐶 (256) 𝐶 (384) ✓
WIS 𝐶 (64) 𝐶 (128) 𝐶 (256) ✓
USC 𝐶 (64) 𝐶 (128) 𝐶 (256) ✓

4.1.2 Datasets. During recent years, the researchers in embedded systems, persuasive and ubiq-
uitous computing, and human-computer interaction have built various human activity datasets to
benchmark machine learning algorithms for activity recognition research. In this paper, we select
several mainstream public𝐻𝐴𝑅 datasets to analyze and recognize various types of human activities.
Before feeding these sensor signals into networks, we use sliding window to divide sensor signals
into tensors with different shapes. UCI-HAR, UniMiB-SHAR, WISDM and USC-HAD datasets are
divided into training set, validation set and test set at a ratio of 7:1:2 while OPPORTUNITY and
PAMAP2 datasets are subject-wisely divided into three parts. The details of data preprocessing are
summarized in Table 3.

UCI-HAR dataset (UCI ) [37]. In order to provide a benchmark for comparing various machine
learning algorithms, several researchers from the University of California Irvine conduct this data
collection. In a supervised scenario, 30 volunteers (19-48 years old) who join the data collection
were asked to wear a Samsung Galaxy S2 smartphone on their waists and perform 6 different types
of activities of daily living (ADLs) including 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑜𝑤𝑛𝑠𝑡𝑎𝑖𝑟𝑠 and 𝑢𝑝𝑠𝑡𝑎𝑖𝑟𝑠 , 𝑠𝑖𝑡𝑡𝑖𝑛𝑔, 𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔,
𝑙𝑦𝑖𝑛𝑔,𝑤𝑎𝑙𝑘𝑖𝑛𝑔. The sensor signals are sampled (sampling rate: 50 𝐻𝑧) by triaxial angular velocity
and acceleration sensors.

OPPORTUNITY dataset (OPPO) [38]. The project was conducted by Daniel et al. in University
of Sussex. They built a rich sensor environment that consists of 15 wireless and wired networked
sensor systems. There are 72 sensors of 10 modalities within the sensor system. The sampling rate
is set to 30 𝐻𝑧. All in all, 17 types of activities in a breakfast scenario were recorded from four
subjects. On each subject was equipped with rich wearable sensor nodes for the inference of human
activities.

UniMiB-SHAR dataset (Uni) [39]. Daniela et al. in University of Milano-Bicocca created this
new acceleration dataset. The samples were acquired by a smartphone with 𝐴𝑛𝑑𝑟𝑜𝑖𝑑 𝑂𝑆 . The
sampling rate is 50 𝐻𝑧. The whole dataset was designed for monitoring human activity and
detecting falls. 30 volunteers ranging from 18 to 60 years contributed to all 11771 samples.

PAMAP2 dataset (PAM2) [40]. This dataset was collected by Department of Augmented Vision
German Research Center of Artificial Intelligence. Within the PAMAP (Physical Activity Monitoring for
Aging People) project, the researchers recorded 18 types of activities consisting of𝑤𝑎𝑙𝑘𝑖𝑛𝑔, 𝑐𝑦𝑐𝑙𝑖𝑛𝑔,
𝑟𝑜𝑝𝑒 𝑗𝑢𝑚𝑝𝑖𝑛𝑔 𝑒𝑡𝑐 , which are collected from 9 subjects. Each subject wears 3 Inertial Measurement
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Units (𝐼𝑀𝑈𝑠) and a heart-rate-monitor attached to arm, ankle and chest respectively. The sampling
rate is 100 𝐻𝑧. The PAMAP2 dataset were created and made publicly available.
WISDMdataset (WIS) [41]. To collect enough sensor data for benchmarking supervised activity

recognition task, the researchers from FordhamUniversity enlisted 29 subjects who carry an𝐴𝑛𝑑𝑟𝑜𝑖𝑑
smartphone to perform certain daily activities. Specifically, placing the smartphone in their front
pants pocket, all the subjects were asked to do a set of activities including 𝑠𝑖𝑡𝑡𝑖𝑛𝑔, 𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔, 𝑗𝑜𝑔𝑔𝑖𝑛𝑔,
𝑤𝑎𝑙𝑘𝑖𝑛𝑔, 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 and 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑎𝑖𝑟𝑠 . The acceleration signals are collected every 50ms. That
is to say, there are 20 samples within every second. To ensure the quality of sensor data, one of the
WISDM research team strictly supervise the whole data collection process.

USC-HADdataset (USC) [42]. Zhang and A.Sawchuk from the University of Southern California
created this dataset. The activity data is recorded by a high-performance sensing device called
MotionNode, which is a 6-DOF inertial measurement unit (𝐼𝑀𝑈 ) integrating a triaxial accelerometer,
a triaxial gyroscope, and a triaxial magnetometer. There is total 14 volunteer subjects including
7 males and 7 females who take part in the data collection. During data collection process, the
𝑀𝑜𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 were attached to each subject’s right front hip and then connected to a laptop held
on one subject’s right hand with𝑈𝑆𝐵 connection. 12 different kinds of activities such as 𝑗𝑢𝑚𝑝𝑖𝑛𝑔,
𝑠𝑖𝑡𝑡𝑖𝑛𝑔 and 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 𝑒𝑡𝑐. are collected at a constant sampling rate of 100 𝐻𝑧.

Table 3. Data pre-processing

Dataset Categories Window Size Overlap Rates
UCI 6 128×9 50%
OPPO 17 107×64 30%
Uni 17 151×3 50%
PAM2 12 120×86 50%
WIS 6 200×3 78%
USC 12 512×6 50%

4.1.3 Evaluation Metrics. For a more comprehensive evaluation, we select four diverse eval-
uation metrics including 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, F1-measure, 𝐼𝑛𝑓 𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 and 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 , which can be
mathematically formulated as follows:

𝑇𝑃𝑅 (Re𝑐𝑎𝑙𝑙) = 𝑇𝑃

𝑇𝑃 +𝑇𝑁 ,𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 ,

𝑃𝑃𝑉 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , 𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁 ,

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × Re𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + Re𝑐𝑎𝑙𝑙

,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁 ,

𝐵𝑀 (𝐼𝑛𝑓 𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠) = 𝑇𝑃𝑅 +𝑇𝑁𝑅 − 1,
𝑀𝐾 (𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠) = 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1.

(6)

In Eq.6,𝑇𝑃 , 𝐹𝑁 , 𝐹𝑃 , and𝑇𝑁 denote true positives, false negatives, false positives, and true negatives
respectively.

4.1.4 Quantitative Comparison. After conducting experiments 5 times and calculating the
mean value, we present our experiment results in this part. The filter activation is compared with
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(a) UCI-HAR (b) OPPORTUNITY

(c) UniMiB-SHAR (d) PAMAP2

(e) WISDM (f) USC-HAD

Fig. 7. Validation 𝐹1 curves on different datasets

the 3-layer baseline 𝐶𝑁𝑁𝑠 and other recent 𝑆𝑂𝑇𝐴 algorithms. The results are summarized in
Table 4. Setting 𝐴 to be 0.4 and 𝑐 to be 100, we select 6 networks to evaluate the filter activation.
The best number of networks are further explored in the following ablation experiments. As
shown in Table 4, maintaining the number of parameters at a relatively low level, the accuracy
improvement caused by external activation is the highest due to richer information from multiple
networks that are able to provide more meaningful filters. According to the validation results
from UCI-HAR (Fig.7(a)) and OPPORTUNITY (Fig.7(b)), the external activation outperforms their
corresponding baselines 1.29% and 2.39% respectively. In comparison with baselines from UniMiB-
SHAR (Fig.7(c)) and PAMAP2 (Fig.7(d)), the external activation produces 1.93% and 2.1% accuracy
improvement. On WISDM (Fig.7(e)) and USC-HAD (Fig.7(f)), the accuracy rates are improved by
external activation at 1.94% and 2.47% respectively when compared with their baselines. We extend
the experimental results by adding more baselines including filter pruning and ensemble learning.
We first compare filter activation with the competing pruning approaches. For fair comparisons,
the baseline network structures for filter activation and pruning are the same, in which there are
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(a) 5-fold cross-validation (b) Friedman test

Fig. 8. Cross-validation & Friedman test

96.63[20]

95.18[18]
95.75[15]

95.37[43]

75.54[22]

76.83[14]
79.32[44]

74.6[45]

76.04[17]

72.8[46]
75.66[47]

76.83[48]

89.3[33]

89.96[14]
85.4[36]

92.1[49]

97.82[50]

98.81[51]
97.52[52]

96.2[53]

93.79[54]
91.7[55]

94.04[56]

85.71[57]

Fig. 9. Radar chart in terms of four evaluation metrics (%, see Table 4)

about 50% filters identified as invalid to be removed from each layer in the baseline network. The
other training hyper-parameters are consistent with those in the first network used to perform
filter activation. Results from Table 4, it can be seen that filter pruning performs even worse
than the baseline network. We may find that filter activation can easily beat filter pruning on
every dataset setting, which confirms once again that filter activation can improve the potential of
convolutional networks by encouraging filters to learn complementary information from outside
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networks. Then we experimentally explore the difference between ensemble learning and filter
activation that involve multiple networks. For fair comparisons, we ensemble six networks in this
experiment, where their hyperparameters’ setting is consistent with the corresponding setting
for filter activation. The model accuracy with parameter usage are summarized in Table 4. We
can find that six-network ensembles perform slightly better than six-network activation. There
exists small gap caused by filter activation because such valid filters might also be influenced by
invalid ones, hence leading to negligible information loss. But filter activation only maintains one
network instead of six networks for inference, which is significantly superior to ensemble learning
according to lightweight property. The results are consistent with our analyses.

Besides, we also conduct 5-fold cross-validation (Fig.8(a)) to prove the improvement of our
method is reliable. On the basis of cross-validation, we conduct further Friedman test (Fig.8(b)) on
6 datasets and 4 models to show that the improvement of external activation is conspicuous when
compared with the baseline. These results demonstrate that the accuracy boost is robust and usual
phenomenon after adopting external activation.

The external activation is also compared with recent SOTA algorithms. The comparison results
are summarized in Table 4. In particular, a radar chart is used to illustrate relative performance gain
according to several comprehensive evaluation metrics including 𝐹1 score, accuracy, etc. The results
from Fig.9 show that filter activation could achieve the best performance among all the learning
algorithms. For example, on UCI-HAR dataset, the external activation outperforms [15], [18], [20]
and [43] by 1.43%, 2.0%, 0.55% and 1.81% respectively. In the case of OPPORTUNITY dataset, the
external activation is superiors to [22], [14], [44] and [45] by 5.82%, 4.53%, 2.04% and 6.61% respec-
tively. When it comes to UniMiB-SHAR dataset, there are 1.43%, 4.67%, 1.81% and 0.63% performance
improvements caused by external activation compared with [17], [46], [47] and [48]. In the case of
PAMAP2 dataset, the external activation surpasses [33], [14], [36] and [49] by 2.88%, 2.22%, 6.78%
and 0.07% respectively. On WISDM dataset, our external activation outperforms [50], [51], [52]
and [53] by 1.2%, 0.21%, 1.5% and 2.9% respectively. In terms of USC-HAD dataset, there are 5.75%,
7.84%, 5.5% and 13.19% accuracy improvements caused by external activation compared with [54],
[55], [56] and [57].

4.2 Ablation Study
All ablation experiments are composed of 6 parts, which are conducted on UCI-HAR dataset and
OPPORTUNITY dataset respectively. In 4.2.1, we investigate how to select useful activating infor-
mation source. In 4.2.2, we explore the optimal number of networks in external filter activation. In
4.2.3, we visually analyze confusion matrices of external filter activation. In 4.2.4, the effectiveness
of the proposed method is evaluated via counting the number of invalid filters. In 4.2.5, we analyze
the influence of training diversities according to several key hyper-parameters such as learning
rate and sample order. Finally, for efficient consideration, we perform real-time prediction on an
embedded platform (Raspberry Pi Model 3 B Plus) in 4.2.6.

4.2.1 How to select useful information source. We perform extensive experiments to examine
the impact of three different activating information sources. For fair comparisons, the same network
structure and hyper-parameters are used as indicated in Section 4.1.1. Six networks are trained in
parallel for external filter activation. In external activation case, all networks have almost the same
performance after training process. Without loss of generality, we select the first network for our
evaluation. As shown in Table 4, it can be seen that internal activation has very similar recognition
results with ‘noise’ source, which suggests that reactivating internal filters within a single network
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Table 4. Test results (%) and parameters (M)

UCI OPPO Uni PAM2 WIS USC

Baseline

Acc. 95.89 78.97 75.54 90.08 97.08 97.07
𝐹1 95.81 78.92 75.51 90.03 97.09 97.06
BM 91.62 57.94 51.15 80.16 94.14 94.03
MK 91.74 57.89 51.32 80.2 94.23 94.18
Para. 0.34 1.67 0.34 0.34 1.48 0.4

Gaussian
noise

Acc. 96.67 79.85 75.75 91.45 97.32 97.38
𝐹1 96.57 79.81 75.74 91.35 91.32 97.39
BM 93.29 59.68 51.4 82.76 94.75 94.76
MK 93.33 59.58 51.56 82.77 94.69 94.72
Para. 0.34 1.67 0.34 0.34 1.48 0.4

Filter
pruning

Acc. 95.47 78.55 74.23 89.01 96.17 96.21
𝐹1 95.43 78.54 74.27 88.98 96.17 96.22
BM 90.87 57.09 48.45 77.8 92.41 92.4
MK 90.86 57.06 48.57 78.2 92.35 92.31
Para. 0.21 0.96 0.22 0.2 0.94 0.19

Ensemble
Learning

Acc. 97.23 81.42 77.52 92.25 99.13 99.61
𝐹1 97.21 81.24 77.48 92.23 99.09 99.58
BM 94.58 61.97 55.41 84.56 98.14 99.01
MK 94.49 61.96 55.39 84.48 98.12 98.95
Para. 2.07 10.09 2.08 2.08 8.92 2.6

Internal
activation

Acc. 96.84 80.0 75.96 91.79 98.32 99.08
𝐹1 96.83 80.01 75.99 91.78 98.26 99.12
BM 93.58 60.15 51.96 83.75 96.56 98.3
MK 93.62 60.09 52.01 83.56 96.58 98.32
Para. 0.35 1.69 0.36 0.36 1.5 0.41

External
activation

Acc. 97.18 81.36 77.47 92.18 99.02 99.54
𝐹1 97.18 81.21 77.46 92.17 99.1 99.48
BM 94.54 61.94 55.33 84.54 98.11 98.9
MK 94.47 61.93 54.84 84.32 98.13 98.95
Para. 0.35 1.69 0.36 0.36 1.5 0.41

Results of
other researches

95.75 [15] 75.54 [22] 76.04 [17] 89.3 [33] 97.82 [50] 93.79 [54]
95.18 [18] 76.83 [14] 72.8 [46] 89.96 [14] 98.81 [51] 91.7 [55]
96.63 [20] 79.32 [44] 75.66 [47] 85.4 [36] 97.52 [52] 94.04 [56]
95.37* [43] 74.6* [45] 76.83* [48] 92.1* [49] 96.2* [53] 85.71* [57]

★: Test 𝐹1 Score.

is not able to produce extra information gain. The external filters from multiple networks perform
the best among all three information sources. Therefore, we consider external filter activation in
the remaining experiments.

4.2.2 The best number of networks in external filter activation. For external filter activa-
tion, the number of networks is an important hyper-parameter. We analyze the influence of this
parameter on recognition accuracy for UCI-HAR and OPPORTUNITY. The recognition accuracy
for external filter activation with the number of networks ranging from 1 to 8 are summarized
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in Table 5. One could clearly observe that the accuracy of external filter activation first gradually
increases with more networks, and then decreases when the number of networks is larger than a
certain number. It is worthwhile to note that 6 networks activation performs best among all the
models. As we continue to raise the number of networks, the recognition accuracy slightly becomes
worse. The filter activation method could help filters to learn more useful information from external
networks, which is able to greatly enhance the network’s representation ability. Unlike traditional
ensemble learning, the external activation ensembles more useful filters into only a single network
for final evaluation, which does not increase any memory and computational overhead.

Table 5. Test Accuracy(%) under different numbers of networks involved in filter activation

UCI OPPO
Baseline 95.89 79.14

2 networks activation 96.57 79.4
3 networks activation 96.6 79.55
4 networks activation 96.64 80.08
6 networks activation 97.18 81.36
8 networks activation 96.84 80.33

4.2.3 Confusion matrices. Fig.10 visually shows the performance of the proposed method
through confusion matrices on PAMAP2 dataset. The figure presents one typical misclassification
example, in which there are 89 ‘Standing’ examples to be misclassified as ‘Vacuum Cleaning’ by the
baseline model. Our method can greatly reduce the number of misclassified activity samples down
to 50. All in all, the filter activation can provide much lower errors, which confirms its superiority
in ubiquitous activity recognition tasks.

4.2.4 The effectiveness of filter activation. We further evaluate the effectiveness of the pro-
posed method by counting the number of invalid filters after training. The 3-layer 𝐶𝑁𝑁 without
activation is selected as our baseline. We consider the same network structure with activation
trained on OPPORTUNITY and UCI-HAR for our evaluation. The effectiveness is analyzed by
changing different threshold 𝛾 , and the comparison results are shown in Fig.11. We first discuss the
case on OPPORTUNITY dataset (Fig.11(a)). When the threshold is large, i.e., 𝛾=1, it can be observed
that the invalid filters accounts for the large proportion (50% and 61.1% respectively). We continue
to decrease the threshold 𝛾 . When 𝛾 is equal to 1𝑒−3, the activation can maintain the number of
invalid filters at a much lower ratio, i.e., about 5.4%, while there are nearly a 37.2% ratio of invalid
filters for the baseline model, which indicates that the filter activation is very beneficial for reducing
the number of invalid filters. One also could observe a similar phenomenon on UCI-HAR dataset
(Fig.11(b)), which verifies that filter activation do improve the representation ability of the network.
However, as one continues to reduce 𝛾 to 1𝑒−3 or lower, the reduction of invalid filter indicates a
saturating trend.

In order to prove that filter activation does affect model performance, we show the information
sharing between multiple networks parallelly trained by calculating the number of invalid filters
and information gain during the training process. The results are shown in Fig.12, in which the
𝑥 axis represents the number of training epochs, e.g., 0, 25, 50 75, 100. Specifically, the network’s
information is denoted as the sum of all the layers’ entropy within the first network. On one hand,
it can be seen that there is a large proportion of filters counted as ‘invalid’ before training and
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(a) Baseline (b) External Activation

(c) Annotation

Fig. 10. Confusion Matrices of PAMAP2 dataset

filter activation does gradually reduce the number of invalid filters. On the other hand, one can
clearly observe that the network aggregates more information through our activation approach as
the training process goes on, which proves that filter activation does improve the potential of the
network.

(a) OPPORTUNITY (b) UCI-HAR

Fig. 11. The effectiveness of filter activation
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Fig. 12. The Information (Entropy) and Ratio of Invalid Filter (%, Threshold = 1𝑒−3) for the Baseline
network and Ex-activated network on UCI-HAR during Training Stage

4.2.5 Training Diversity in Filter Re-activation. Ensemble diversity, i.e., the difference among
all individual learner, plays a fundamental role in filter activation, which is crucial for final perfor-
mance. More variations in external activation can produce a better learning effect. We set different
learning strategies and different sample orders of training set to raise ensemble diversity. Six
heterogeneous networks (𝑀1-𝑀6) are used in this part. For simplicity, the initial learning rate of
𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, and 𝑀6 are 5𝑒−3, 5𝑒−4, 2𝑒−3, 2𝑒−4, 1𝑒−3, and 1𝑒−4 which are decayed to 95%
every 10, 20, 25, 30, 40, and 50 epochs, respectively. As shown in Table 6, the various learning
strategies and different sample orders can significantly enhance training diversity, which leads
to better classification performance. We also encourage further study about how to improve the
performance of filter activation via promoting ensemble diversity.

Table 6. Test Accuracy (%) with Training Diversity

Different 𝐿𝑆 Different Order UCI OPPO
× × 95.91 79.33
× ✓ 96.77 79.78
✓ × 96.87 80.23
✓ ✓ 97.18 81.36

4.2.6 Prediction on real-time platform (𝑅𝑎𝑠𝑝𝑏𝑒𝑟𝑟𝑦 𝑃𝑖 𝑀𝑜𝑑𝑒𝑙 3 𝐵 𝑃𝑙𝑢𝑠). Regardless of the ef-
fectiveness, we continue to evaluate actual operation in real-time embedded systems for efficient
consideration. Due to the limitation of computing resource, there are two main steps to deploy
the embedded 𝐻𝐴𝑅 systems: 1) train the network with filter re-activation on collected training
dataset; 2) import this trained network into embedded system and run it to read real-time data
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and output prediction. Since the 𝑃𝑦𝑇𝑜𝑟𝑐ℎ library can be easily installed into 𝑅𝑎𝑠𝑝𝑏𝑖𝑎𝑛 𝑂𝑆 , we
select the Raspberry Pi Model 3 B plus with 𝐴𝑅𝑀 Cortex-A53 and 1𝐺𝐵 𝑆𝐷𝑅𝐴𝑀 as our test platform.
We develop a Raspbian-based application software for real-time activity recognition, and its user
interface is shown in Fig.13(a). This application is built to test our activation algorithms using
UCI-HAR dataset. The timing is done after the network is loaded and starts to output a prediction.
The inference time with two network structures is compared in Table 7. The results show that it
takes about 116.56∼127.88 ms to predict one window for the baseline model. The inference speed
reaches 112.21∼129.17 ms per each window for the same network structure with filter activation.
The inference time curves are plotted in Fig.13(b). Both the models have almost the same inference
time, and the activation does not lead to any extra computational burden.

In order to monitor real-time electricity usage and cost, we perform an experimental analysis of
power consumption by plugging the 𝑅𝑎𝑠𝑝𝑏𝑒𝑟𝑟𝑦 𝑃𝑖 into a 𝑇𝐶66 meter. As shown in Fig.13(c), this
device supports𝑈𝑆𝐵 communication with an external connected laptop, which allows power mea-
surements to be programmatically sampled at a frequency of 1 𝐻𝑧. The measurement process lasts
two minutes long. Table 7 reports the statistic of power consumption for each model. The power
consumption of baseline network is 4.16∼5.17𝑊 , which is very close to that of filter activation, i.e.,
4.15∼5.21𝑊 . The results verify that filter activation may compensate invalid filters to achieve an
accuracy improvement at similar energy efficiency.

(a) User Interface (b) Inference Time Curves (Actual 500 Times
Test Actual on Raspberry Pi 3 Model 3 B+)

(c) Power Usage on Raspberry Pi 3 Model 3 B+ (120 Seconds Test)

Fig. 13. Actual Testing on Raspberry Pi Model 3 B Plus
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Table 7. Actual Testing

Inference time
(𝑤𝑖𝑛𝑑𝑜𝑤𝑠/𝑚𝑠)

Number Baseline Filter activation
1𝑠𝑡 test 125.61 114.61
2𝑛𝑑 test 125.94 125.31
3𝑟𝑑 test 117.21 124.06
4𝑡ℎ test 118.01 124.21
5𝑡ℎ test 127.75 125.19

...
Average 122.05 122.61

Std 3.82 4.37

Power Usage
(𝑊 )

Average 4.66 4.67
Std 0.29 0.31

Range 4.16∼5.17 4.15∼5.21

5 CONCLUSION
In this paper, inheriting an idea of ensemble learning, we develop a novel learning paradigm that
uses filter activation to reform convolutional architecture for activity recognition. The invalid filters
that have small impact on output performance potentially waste computing resources on embedded
devices. In order to re-activate invalid filters, we consider the following three strategies: 1) Gaussian
noise activation; 2) Internal activation; 3) External activation. Instead of simply pruning invalid
filters, our approach aims to re-activate such invalid filters by absorbing useful information from
outside networks, which requires multiple networks to be trained in parallel, hence leading to two
main challenges for effective filter activation: 1) How to determine which filters will be used to
perform activation in 𝐶𝑁𝑁𝑠 . 2) How to share information (weights) between multiple networks.
To resolve the two issues, we first propose an entropy-based measure to select these meaningful
filters, and then use an adaptive weighting strategy to share weights in layer level rather than
filter level for avoiding breaking layer consistency. Compared with filter pruning, our approach is
simpler as it does not need to modify network architecture. It is also more efficient than ensemble
learning in light of lightweight property, as inference is performed using only one network instead
of multiple networks. There are two possible directions for future research: 1) How to perform
filter activation among networks using heterogeneous structures instead of the same ones; 2) How
to share weights between networks in filter level instead of layer level. We hope that this paper
may motivate other researchers to develop new criteria to further improve the filter activation
performance.
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