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Abstract—Due to rapid development of sensor technology,
human activity recognition (HAR) using wearable inertial sensors
has recently become a new research hotspot. Deep learning, espe-
cially convolutional neural network (CNN) that can automatically
learn intricate activity features have gained a lot of attention in
ubiquitous HAR task. Most existing CNNs process sensor input
by extracting channel-wise features, and the information from
each channel can be separately propagated in a hierarchical way
from lower layers to higher layers. As a result, they typically
overlook information exchange among channels within the same
layer. In this paper, we first propose a shallow CNN that
considers cross-channel communication in HAR scenario, where
all channels in the same layer have a comprehensive interaction
to capture more discriminative features of sensor input. One
channel can communicate with all other channels by graph
neural network to remove redundant information accumulated
among channels, which is more beneficial for deploying light-
weight deep models. Extensive experiments are conducted on
multiple benchmark HAR datasets, namely UCI-HAR, OPPOR-
TUNITY, PAMAP2 and UniMib-SHAR, which indicates that the
proposed method enables shallower CNNs to aggregate more
useful information, and surpasses baseline deep networks and
other competitive methods. The inference speed is evaluated via
deploying the HAR systems on an embedded system.

Index Terms—Sensor, convolutional neural networks, human
activity recognition, deep learning, cross-channel communication

I. INTRODUCTION

W ITH rapid development of the Internet-of-Things and
sensor technology, human activity recognition (HAR)

using wearable inertial sensors has become a new research
hotspot due to its extensive use in a large variety of application
domains such as health-care [1], sports tracking [2] [3],
fitness, game console design [4] and smart homes [5].
Deep learning [6] [7] has gained a lot of attention in
sensor based HAR scenario. Especially, convolutional neural
networks (CNNs) have started delivering their advantages over
feature learning and achieved state-of-the-art performance for
HAR [8] [9]. Traditionally, various methods from the field
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of signal processing [10] [11] have been widely leveraged to
distill collected sensor data, which requires domain-specific
expert knowledge to process raw data. Statistical and machine
learning models are then trained on the version of processed
data [12]. That is to say, feature engineering is required to fit a
model, which is expensive and not scalable. CNNs are capable
of performing automatic feature learning, which significantly
surpasses models fit on hand-crafted domain-specific features.
Ideally, CNNs with automatic feature extraction provide the
ability to learn features from raw sensor data with little
pre-processing involved in feature engineering.

However, most existing CNNs for HAR typically overlook
information exchange [13] [14] among channels within
the same layer. When recognizing one human activity, the
information between different channels at the same layer will
not be exchanged. As far as we know, CNNs are composed
of neurons that have a set of learnable weights and biases
(i.e., filter). Based on these weights and biases, each neuron
receives sensor input, performs a dot product, which is
optionally followed by a non-linearity activation. Regarding
each channel in CNN as a single neuron, the neurons at
each layer typically respond to sensor input independently,
which do not share any connections. Most existing CNNs
process sensor input by extracting channel-wise features,
and the information from each channel can be separately
propagated in a hierarchical way from lower layers to higher
layers. As a result, there is lots of redundant information
accumulated between channels for the same layer, which
leads an inefficient deep learning for HAR.

In this paper, we for the first time consider Cross-
channel Communication (C3) for CNN based HAR. During
training stage, the information at the same layer can be
fully exchanged across different channels. That is to say,
our method encourages all channels at the same layer to
have a comprehensive interaction in order to capture more
discriminative features of sensor input. When communicating
with each other, the feature responses of all channels could be
calibrated more explicitly to remove accumulated redundant
information, which then are passed to next layers. The sketch
map of C3 block in HAR is presented in Fig.1, which consists
of three parts. The first part is used for feature encoding. This
module can encode feature responses from each channel via
flattening them through MLP with two fully connected (FC)
layers. The second part is used for message passing by graph
neural network which guarantees channels to interact with
each other. Each channel’s feature maps will then be updated.
The third module is in charge of feature decoding, which
reshapes the flattened features to the same size of original
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input. The decoding module then uses standard convolution
operation and passes information to next layers.

We conduct extensive experiments on multiple benchmark
HAR datasets, namely UCI-HAR, OPPORTUNITY, UniMib-
SHAR and PAMAP2, which are publicly available. The effect
of C3 block is evaluated by the baseline CNN with 3 or 6
convolutional layers. The experimental results show that the
proposed method allows shallower CNNs to aggregate more
useful information, which significantly surpasses baseline
deep networks and other competitive methods. The inference
speed is evaluated via deploying the HAR systems on a
Raspberry Pi 3 B plus system. In comparison with previous
CNN approaches used for HAR that overlook cross-channel
interaction, the contributions of our work are three-fold:

• We propose a novel shallow CNN with C3 block for
sensor based HAR, which encourages all channels at the
same layer to have a comprehensive interaction in order to
capture more discriminative feature representation for raw
sensor input.
• When inserting the C3 block to shallower CNNs, we may
obtain even better performance to baseline deep networks
at much smaller memory and computational overhead,
which shows that the learned features are more diverse and
discriminative.
• The effect of C3 block is evaluated by extensive ablation
studies. Regardless of classification performance, we consider
actual running time in a Raspberry Pi 3 B plus embedded
system, which further verifies the efficiency of the proposed
C3 method.

The rest of this paper is organized as follows. In
Section II, we will introduce recent related works. Section
III will describe the details of C3 block and introduce three
parts within it. In Section IV, we show our experiment results
and conduct ablation experiments for further deep study. In
Section V, we draw a conclusion.

Fig. 1: The overview of C3 block

II. RELATED WORKS

The idea of cross-channel interaction has obvious
advantages compared with some recently proposed literatures.
We review a few most related works and discuss their
drawbacks from three aspects.

Traditional filters are usually handcrafted, which is hard
to extract intricate features in complex HAR tasks, while the
innovation of CNNs is the ability to automatically learn a
large number of filters in parallel. During recent years, deep

learning has become a dominant technique in HAR researches
since it can automatically learn intricate activity features.
For example, Wang et al. [15] applied a soft attention
on CNN to locate and recognize weakly labeled sensor
signals. Ordóñez et al. [13] presented a deep learning method
called as DeepConvLSTM, which combines long short-term
memory (LSTM) units with CNN to improve classification
performance in HAR. Zeng et al. [16] and Ma et al. [17]
adopted attention to focus on these channels which have more
contribution to activity recognition. Zeng et al. [18] proposed
a new CNN composed of convolutional layers and pooling
layers, where each axis of three axial acceleration signals can
be seen as one channel. Jiang et al. [14] used a 2D ConvNet
to classify 2-dimensional images which were converted from
raw sensor data. However, unlike imagery data, raw sensor
signals not only have correlation across temporal dimension
but also have connection among different sensor modalities.
Although there has been a significant amount of works on
CNNs in HAR scenario, most existing networks typically
overlook information exchange among channels within the
same layer.

Deep models often require lots of computing resources,
which is not available for wearable devices. In addition, the
models are often trained off-line which cannot be executed
in real-time. However, less complex models such as shallow
networks and conventional machine learning methods could
not achieve good performance. Therefore, it is necessary
to develop light-weight deep models to perform HAR. In
computer vision field, many researches have been devoted to
reducing model complexity. For example, [19] slimmed the
network structure during training stage and [20] proposed
filter pruning technique to compress network. CNNs apply a
set of filters on input to create output feature maps, which
are tensors with a shape: feature map height×feature map
width×feature map channels. In essence, the channel number
is equal to the number of filters (i.e., neurons). [21] proposed
a channel selection based least absolute shrinkage and
selection operator (LASSO) regression, which can accelerate
CNNs with the effect of least square reconstruction. At
run-time, [22] used feature boosting and suppression (FBS) to
skip unimportant channels. [23] replaced normal convolution
with channel-selective convolution to reform existing CNNs.
These operations can enable shallow networks to achieve
an excellent performance comparable to deeper networks.
To our knowledge, light-weight models is more suitable
for wearable HAR computing. The researches of reducing
model complexity are rare to be seen in ubiquitous HAR
scenario. How to design shallow CNNs that have better
feature representation capacity deserves deeper investigations.

In computer vision field, a non-local network (NLN)
used by Wang et al. [24] can easily model long-range
spatial-temporal location’s dependency. Unfortunately, NLN
primarily works for video data because it captures long-range
interactions via computing correlations between any two
locations. To be specific, in video data, it needs to consider
long-range interactions between distant pixels in space as
well as time. Thus, it is not suitable for HAR works. A model
which can establish the interaction between channels is very
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important. In another research line, He et al.[25] proposed
a Squeeze-and-Excitation (SE) network, which can calibrate
channel feature responses. Chen et al. [26] and Dai et al. [27]
used channel-wise attention for semantic segmentation and
image captioning. Wu et al. [28] used group normalization.
This model can be seen as a special model equipped with
channel-wise communication. However, their interactions
across different channels are too simple, where only the
mean and standard deviation of feature maps are computed.
Yang et al. [29] proposed cross-channel interaction at the
same layer in computer vision area, which encourages the
same layer’s channel communication with each other to
produce performance gain. As far as we know, the C3 block
has demonstrated a good number of advantages, but it has
rarely exploited in ubiquitous HAR scenario, which has a
great potential to improve representation ability of shallow
networks.

III. MODEL

A. Formulation
In Section III, we detail the C3 structure within an CNN,

in which related formulations of cross-channel interaction
between channels is illustrated. Fig.2 is the sketch map of the
network. Actually, it is a very crucial step to segment sensor
time series in the activity recognition process. A sliding
window approach has been extensively leveraged to perform
segmentation at fixed window size, in which streams of
sensor data are usually split into continuous subs-sequences
called windows, and each window is associated with a
specific activity. We then may insert the C3 block to a few
convolutional layers to perform activity prediction. If one
neural network has L layers and there are nl filters in each
layer. We use Xl =

{
x1

l , ...,x
nl
l

}
to represent the feature

responses of the l-th layer. In general, after the channel-wise
interaction, the updated response can be formulated by:

x̄i
l = xi

l + f i
l
(
x1

l , ...,x
nl
l

)
(1)

In this formulation, f i
l is a function that is used to accu-

mulate feature responses of all channels. At the same time,
it updates a particular channel’s encoded features. The infor-
mation exchange between different channels can be named as
cross-channel communication (C3), which is realized via f i

l .
In SE block [25], the function f i

l can be deemed as a simple
fully connected layer, which is used to realize simple commu-
nications among all channels. Compared with SE block, the
function f i

l plays a similar role in the C3 block, but it allows
for a more comprehensive communication between channels
via graph neural network [29] [30], where every channel
can be seen as a node in the C3 block. This cross-channel
communication allows an all-side communication across the
whole network. The details of the model are discussed in the
next section.

B. Architecture
The feature encoding, message passing and feature decoding

are the three main parts of cross-channel communication

network.
Feature encoder. All channels’ feature responses are ex-

tracted by this module. To be specific, for a given response
map xi

l , it is firstly flattened to a one-dimensional feature, and
then passed to two FC [6] [29] layers:

yi
l = f in

enc
(
xi

l
)
,

zi
l = f out

enc
(
σ
(
yi

l
)) (2)

In the network, two kinds of linear function are f in
enc and

f out
enc . A Rectified Linear Unit (ReLU) can be represented by

σ . In order to reduce feature dimension by a factor of α > 1,
we add a bottleneck after f in

enc in this module of feature
encoder.

Message passing. In order to encode different feature
response’s representation, the message passing module is
used to guarantee all channels’ interaction with each other.
At the same time, each channel’s feature response is updated.

Graph convolutional network (GCN) [30] is a representative
approach to learn such cross-channel interaction. In particular,
graph attention network has been proposed, in which a soft
attention mechanism is embedded into the GCN. Cross-
channel interaction’s formulation is similar to graph attention
network. To be specific, in an undirected graph, Z =

{
zi

l

}
are nodes. Between two nodes, we denote edge strength
by si j = fatt

(
zi

l ,z
j
l

)
. Recently, various methods have been

adopted to learn fatt [24] [29] [31]. We select a simple yet
effective method which can easily compute the edge strength:

z̄i
l =

hlwl
Σ

k=1
zi

l [k]/(hlwl) ,

si j =−
(

z̄i
l − z̄ j

l

)2
(3)

in which hl and wl denote the height and the width of zi
l

at the l-th layer respectively. The flattened vector zi
l’s k-th

element can be represented as zi
l [k]. In the formulation, the

feature encoder’s average output can be used for increasing
message passing period’s robustness. We then compute the
negative square distance which allows more communication
between similar channels. In this way, we make group of
similar channels, which becomes more complementary and
diverse. The normalized attention scores can be obtained after
a softmax layer. ai j denotes the normalized attention scores.
The output Z =

{
zi

l

}
is formulated as:

Zi
j =

nl
Σ
j=1

ai jz
j
l (4)

nl denotes the number of channels at the l-th layer as
indicated above.

Feature decoder. This module is in charge of obtaining
the information of all corrected channels and reshape this
information to the same size of original input. The feature
decoder use normal convolution operation, which passes the
information to next layers. The feature decoder go in effect
after acquiring channel-wise updated output Z.

Feature encoder, message passing and feature decoder
allow all neurons at the same level to communicate for
complementing with each other. In the C3 block, each
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Fig. 2: The sketch map of the network with Cross-channel Communication(C3) block. The curves represent sensor time
series. Sliding window is used to generate sensor examples.

neuron’s information from the same layer is first computed
by the encoder. These neurons interact with each other via
message passing module, which uses graph neural network
to pass the information of one neuron to all other neurons.
Finally, the information is collected by the decoder and sent
to subsequent layers. All in all, feature encoder, message
passing and feature decoder allow all neurons at the same
level to communicate for complementing with each other.

Complexity of Computing and Model. The computational
burden of C3 block is very light. There are only two FC layers
in each C3 block, which is not involved in the number of
channels. As a result, the number of parameters in network is
low. In effect, through many experiments, we find that adding
the C3 block after all the layers is unnecessary. Adding the
C3 block after only a few layers is able to further reduce
memory or computational burden without compromising
accuracy, which is very useful in HAR scenario. The part
will be explored in the following section.

IV. EXPERIMENT

A. Datasets
We utilize the same preprocessing techniques that

have been well-established in the four benchmark HAR
datasets [37] [38] [39] [40]. However, for various datasets,
there is still no clear consensus on the optimal window size,
which should be preferably employed. So far, it has been
rarely and vaguely investigated. For larger window size, the
HAR system has to ’wait’ the longer for a new window to
be available for predicting. According to common intuition,
decreasing window size is more beneficial for a faster
activity detection, as well as reduced computing resources.
Instead, raising window size are normally motivated for the
recognition of complex activities, which takes place for a
long period of time. In fact, most designs normally depend
on window size used in previous researches, but there are
no strict studies to explore them. For fair comparison, we
still select the same values used in previous successful
cases [13] [18] [32] [33] [35] for each dataset. The details of

how to preprocess datasets can be seen in Table I. For each
dataset, the heterogeneous sensor values are normalized into
zero mean and unit variance via subtracting the mean and
dividing by the standard deviation.

UCI-HAR dataset [37]. It was collected by University
of California Irvine to test machine learning algorithms on
HAR task. 30 Volunteers between 19 to 48 were chosen
to join in the data collection. They were all equipped with
Samsung Galaxy S2 on their waists. The 6 activities of
daily living(ADLs) performed in a supervised scenario
were standing, lying, walking, walking upstairs and walking
downstairs. The data was collected by triaxial angular velocity
and acceleration sensors. The activity recognition begins with
the acquisition of the sensor signals, which are subsequently
pre-processed by applying noise filters and then sampled
in fixed-width sliding windows of 2.56 seconds and 50%
overlap.

OPPORTUNITY dataset [38]. The project was conducted
by Daniel et al. in University of Sussex. They built a rich
sensor environment that consists of 15 wireless and wired
networked sensor systems. The sensor system has 72 sensors
of 10 modalities in it. On body, each subject was equipped
with rich number of sensors for machine recognition of human
activities. As a result, they collected 17 morning activity
data from four subjects. The issue of missing sensor values
can be handled by either by interpolation or repetition of
previous values. Among them, using interpolation consistently
performs better.

PAMAP2 dataset [39]. This dataset was collected by
Department of Augmented Vision German Research Center of
Artificial Intelligence. Within the PAMAP (Physical Activity
Monitoring for Aging People) project, the researchers
recorded 18 activities from 9 subjects that consists of
walking, cycling, rope jumping etc. All subjects wore 3
Inertial Measurement Units(IMUs) and a heart-rate-monitor.
A simple linear interpolation method is used to handle
missing sensor data. In order to avoid dealing with eventual
transient activities, 10-second data at the beginning and the
end of each labeled activity instance is removed, respectively.
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TABLE I: Simple description of benchmark HAR datasets

Attribute
Dataset UCI-HAR OPPORTUNITY PAMAP2 UniMib-SHAR

Sampling Rates 50Hz 30Hz 100Hz 50Hz
Number of Categories 6 17 12 17

Proportion of Training Data 70% 70% 80% 70%
Proportion of Testing Data 30% 30% 20% 30%

Sliding Window Size 128 64 512 151
Overlap Rates 50% 50% 50% 50%

TABLE II: Simple description of CNN

Simple Description
Dataset UCI-HAR OPPORTUNITY PAMAP2 UniMib-SHAR

Layer1 C(64) C(64) C(128) C(64)
Layer2 C(128) C(256) C(256) C(256)
Layer3 C(256) C(384) C(384) C(384)

FC ✓ ✓ ✓ ✓
Softmax ✓ ✓ ✓ ✓

Training time(epoch) 200 200 200 200
Batch size 64 1024 128 64

Learning rate 0.001 0.001 0.001 0.001
Reduction Ratio(α) 8 16 16 8

TABLE III: Accuracy(%)&Parameters(M)&Flops(M) of models on various datasets

Model + Method
Dataset UCI-HAR OPPORTUNITY PAMAP2 UniMib-SHAR

3 layers CNN (baseline) 96.13&0.341&20.64 77.86&1.347&24.5 90.23&0.869&6.76 73.91&1.522&40.64
3 layers CNN + C3 96.98&0.342&20.7 80.23&1.347&24.52 91.93&0.869&6.77 75.42&1.524&40.67

3 layers CNN + C3 (5-Fold Cross Validation) 96.96&0.342&20.7 80.14&1.347&24.52 91.76&0.869&6.77 75.16&1.524&40.67
6 layers CNN 96.84&0.599&46.69 79.59&3.02&56.34 91.11&2.935&23.6 74.75&2.213&75.66

Other Researchers’ Results 96.27 [32]&1.3&34.99 79.32 [33]&-&- 91.4 [32]&2.86&79.13 74.41 [32]&1.87&40.73
96.97 [33]&0.35&- 75.54 [13]&-&- 92.21 [33]&2.6&- 74.66 [34]&-&-

95.75 [35]&-&- 76.83 [18]&-&- 85.4 [36]&-&- -
95.18 [14]&-&- - 89.96 [16]&-&- -

UniMib-SHAR dataset [40]. Daniela et al. in University
of Milano-Bicocca collected a new acceleration dataset.
The samples were acquired by a smartphone with Android
operating system. The whole dataset was designed for
monitoring human activity and detecting falling. 30 volunteers
ranging from 18 to 60 years contributed to 11,771 samples. In
order to preprocess acceleration signals, we need to remove
low-frequency gravitational component. A Butterworth low-
pass filter with a 20 Hz cutoff frequency is adopted to generate
the accelerometer data without gravitational component.

B. Setup of Networks

In this part, we will demonstrate the details of C3 block.
The optimizer we choose is Adam. Taking into account the
peculiarities of different datasets, we set different learning
rates for various datasets. Learning rate is set to decay
exponentialy to speed training process. The deep learning
framework we used is Pytorch. We conduct our experiments

on a deep learning server machine (GPU: RTX 3090 with
24GB, CPU: Intel i7 6850K, RAM: 64GB). Table II shows the
detailed description of networks. C(Ls) means a convolutional
layer that has Ls feature maps. For different datasets, we
set α = 8 or 16, which is charge of compressing feature
dimension to reduce computational cost.

C. Quantitative Comparison

In this part, we will show our experiment results. The
representative baseline networks contain 3 layers or 6 layers.
We also compared our results with recent state-of-the-art
performance on several benchmark HAR datasets. The
performance improvements are presented in Table III.

1) The improvement on UCI-HAR dataset: Using cross-
channel interaction idea, we insert C3 block after the third
layer. We compared the three models, and the test accuracy
curves are shown in Fig.3. The size of feature maps fed
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into C3 block is 4×15×256 (W×H×N). From results in
Table III, it can be observed that the 3-layer CNN with C3
block outperforms the baseline 3-layer and 6-layer CNN by
an accuracy improvement of 0.85% and 0.14% respectively.
For efficient consideration, the 3-layer CNN with C3 block
have almost the same parameters and Flops with the baseline.
Compared with the 6-layer CNN, it has much lower memory
and computational overhead.

In Table III, we also compare our results with other competi-
tive methods. According to classification accuracy, our method
is superior to [14], [32] and [35] by 1.8%, 0.71% and 1.23%
respectively. As far as we know, the best result on UCI-HAR
dataset is obtained by [33]. The C3 block has almost the same
performance with [33] at much lower computational burden.
The C3 block is more beneficial for HAR task, because it
can strike a more reasonable trade-off between accuracy and
computational budget.

Fig. 3: Test accuracies with different models on UCI-HAR

2) The improvement on OPPORTUNITY dataset: We con-
tinue to perform comparison experiments on OPPORTUNITY
dataset by inserting C3 block after the third layer. The input
feature maps with the size 14×1×384 (W×H×N) are fed into
C3 block. The accuracy improvement caused by C3 block is
shown in Table III, and the test accuracy curves are presented
in Fig.4. When compared with the baseline 3-layer and 6-layer
CNN, the 3-layer CNN with C3 block can produce 2.37%
and 0.64% performance gain respectively without any extra
cost. Based on efficient consideration, it can be concluded that
shallow networks with C3 block have obvious advantages over
baseline deep networks.

The proposed C3 method is compared with other recent
researches, and the comparison results are shown in Table III.
In terms of classification accuracy, our method surpasses [13],
[16] and [33] by 4.69%, 3.4% and 0.91% respectively. To
our knowledge, the best result on OPPORTUNITY dataset
is [33]. As a comparison, the C3 block is more effective
and efficient, which indicates a light-weight advantage with
comparable classification performance.

3) The improvement on PAMAP2 dataset: We add the C3
block after the third layer and send the 11×2×384 (W×H×N)

Fig. 4: Test accuracies with different models on
OPPORTUNITY

sized feature maps into the C3 block for communication. We
train three models and test accuracy curves are illustrated in
Fig.5. According to the results in Table III, we find that the 3-
layer CNN with C3 block yield 1.7% and 0.82% performance
gain respectively when compared with the baseline 3-layer and
6-layer CNN. In terms of accuracy, it is significantly superior
to the baseline CNN at almost the same cost. In addition, it
also has an obvious advantage over deep baseline network with
6-layer from efficient consideration.

We also compare our method with other state-of-the-art
literatures in Table III. For example, our method outperforms
[16], [32] and [36] by an accuracy improvement of 1.97%,
0.53% and 6.35% respectively. As far as we know, [33] sur-
passes our results by 0.28%, which is a negligible performance
enhancement. However, their method requires much more
memory burden than ours. It is evident that the light-weight
C3 block provide a better choice for deep model design in
ubiquitous HAR scenario.

Fig. 5: Test accuracies with different models on PAMAP2

4) The improvement on UniMib-SHAR dataset: We investi-
gate the effectiveness and efficacy of the proposed C3 in three
representative networks. Without loss of generality, we insert
the C3 block at the third layer. The size of input feature maps
sent to C3 block for communication is 11×2×384 (W×H×N).
The test accuracy curves of three networks are given in Fig.6,



0018-9456 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2021.3091990, IEEE
Transactions on Instrumentation and Measurement

7

Fig. 6: Test accuracies with different models
on UniMib-SHAR

and the comparison results are presented in Table III. It can
be seen that the C3 block bring up an accuracy improvement
of 1.51% over the 3-layer baseline with a minimal increase
in computational burden. The C3 network even improves
accuracy by 0.67% over baseline deep network with 6-layer.
It is worthwhile to note that shallower network even surpasses
deeper network, indicating that the learned features under C3
block are more representative.

We continue to compare the proposed C3 method with other
recent researches. As can be seen in Table III, our proposed
C3 outperforms [32] and [34] by a large margin accompanied
by little increase of computational overhead. Concretely, it ac-
quires an accuracy increase of 1.01% and 0.76% respectively.
To the best of our knowledge, the best result on UniMib-SHAR
dataset is reported in [32]. Our accuracy is very close to theirs,
but our resource consumption is much smaller. The ubiquitous
HAR computing usually requires a light-weight model that has
a better performance (i.e., higher accuracy, smaller resource
consumption). Obviously, the C3 block is more suitable for
HAR task.

5) K-fold cross-validation (k=5): We conduct K-fold cross-
validation to verify the robustness of the proposed model. The
datasets will be randomly divided into K equally sized parts.
We will then train our model K times. For each run, a single
fold from K folds is used as hold-out test set, while the rest
folds are set aside for training. A total of K models is fit
and evaluated on test sets. For deep learning, if K is raised,
we have to train more models, which is a tedious and time-
consuming process. Without loss of generality, K is set to 5,
and the mean accuracy is reported in Fig.7. It can be seen that
the C3 block can reliably produce performance gain for each
HAR dataset.

D. Analyzing the C3 Block
From different aspects, we analyze the C3 block in details

via several ablation experiments.
Can C3 block reduce the depth of network? Theoreti-

cally speaking, the CNNs with 6 layers should have a better
representation ability than those with 3 layers. According to
our results in Fig.8, the accuracy improvement caused by

Fig. 7: K-fold cross validation (K=5) on benchmark datasets

Fig. 8: Performance comparisons between shallow networks
and deep networks

the 6-layer CNN is accompanied by a large increase in the
number of parameters and Flops, which is not applicable in
ubiquitous HAR scenario. As shown in Table III, the 3-layer
CNN with C3 block is able to acquire a comparable or even
better accuracy than the 6-layer CNN at much smaller memory
and computation budget. That is to say, under the help of C3
block, shallow networks can show their light-weight advantage
and have a better classification accuracy than baseline deep
CNNs, which is more beneficial for HAR task.

Where is the best place to add C3 block? We conduct
ablation experiments on PAMAP2 and UCI-HAR dataset to
investigate the effect of C3 block at different layers. As
indicated in Fig.9 and Table IV, the most effective way is
to add the C3 block after the second or third layer. According
to recent literatures [41], it can be attributed to the reason
that high-level semantic information is often encoded at higher
layers, in which the neurons can use the C3 block to get more
high-level and diverse feature responses. As a result, adding
C3 block at higher layers can learn more useful information
to perform activity recognition. Due to more filters at the
beginning layer, there are more parameters compared with the
second or third layer. Therefore, merely adding the C3 block
at the final few layers can further reduce model complexity
without compromising classification accuracy.

Which part of C3 block works? We specifically remove
the encoder/decoder and message passing part from C3 block
to analyze their independent contribution to performance im-
provement. We conduct the ablation experiment on PAMAP2
dataset. As shown in Table V and Fig.10, it can be seen that
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TABLE IV: Accuracy(%)&Parameters(M)&Flops(M) of C3 block(s) at different layers

After 1st layer After 2nd layer After 3rd layer PAMAP2 UCI-HAR

✓ - - 90.52&0.869&6.77 96.23&0.341&20.7
- ✓ - 90.67&0.869&6.77 96.64&0.341&20.7
- - ✓ 91.93&0.869&6.77 96.98&0.341&20.7

✓ ✓ - 91.16&0.870&6.78 96.97&0.399&20.91
✓ - ✓ 91.69&0.870&6.78 96.71&0.399&20.91
- ✓ ✓ 92.91&0.870&6.78 97.45&0.399&20.91

✓ ✓ ✓ 91.79&0.871&6.79 97.07&0.401&21.06

(a) PAMAP2

(b) UCI-HAR

Fig. 9: The effect of C3 block at different layers

either encoder/decoder or message passing is able to raise
performance. For the former, the encoder/decoder alone is able
to capture the corresponding channel’s feature responses with-
out the help of message passing, which leads to performance
improvement. In comparison, the message passing outperforms
the encoder/decoder. For the latter, all neurons have a better
feature representation capacity because the Message Passing
can encourage information exchange across different channels.
When the encoder/decoder and message passing are combined,
the performance is remarkably improved.

TABLE V: Test accuracy of C3 block with different parts

Encoder-decoder Message passing Accuracy(%)

- - 90.23
✓ - 90.62
- ✓ 91.11
✓ ✓ 91.93

Fig. 10: Accuracy improvement caused by different parts
within C3 block

E. Visualizations

Confusion matrices. The confusion matrices have been
computed in Fig.11 to visually show performance improve-
ment. All the tests are conducted on PAMAP2 dataset. Com-
pared with the 6-layer CNN, it can be seen that the recognition
performance (3-layer CNN + C3) on every activity nearly have
an improvement. The number of correctly classified activity
examples can be seen along the diagonal line of confusion
matrices. The darker color represents larger number. To be
specific, due to the effect of C3 block, the number of correct
classifications provided by shallow CNN is larger than baseline
deep network.

Visualization of class activation maps (CAM). In order
to find how the C3 block enhance each channel’s feature
responses, we try to build a visualization of class activation
map (CAM) [42]. The CAM is an efficient yet clear method
to detect changes across channels. We train the CNN with 3
layers on PAMAP2 dataset. In Fig.12, we extract heat maps
from our model’s CAM. The filters could always locate salient
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(a) 6-layer CNN

(b) 3-layer CNN + C3

Fig. 11: Confusion matrices on PAMAP2 dataset

sensors in sensor time series. For example, Fig.12 (a) shows
a relatively simple activity: sitting. We can directly oberve
that the IMUs (hand: Z; ankle: X ; chest: Y ) are more excited
points than others. Fig.12 (b)’s lying is a little more complex
activity than sitting. Thus its IMUs (hand: Y Z; ankle: X ; chest:
X Y ) have more excited points than sitting. We continue to
investigate a more complex activity: walking. Compared with
sitting and lying, walking has more movement on subjects’
ankles. So more IMUs (hand: Y ; ankle: X Y Z; chest: X)
become excited points. Among Fig.12, the activity cycling in
Fig.12 (d) is the most complex activity, where the subjects
have various actions on their ankles, hands and chest, that are
even more complex than walking. As a result, we can see
different IMUs (hand: Y Z; ankle: X Y Z; chest: X Y ) have
become excited points. These visualizations demonstrate the
effect of C3 block to feature extraction in CNN based HAR.
Under the help of C3 block, each channel’s filters are able to
learn in a more comprehensive way.

(a) Sitting

(b) Lying

(c) Walking

(d) Cycling

Fig. 12: Visualization of feature responses
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F. Prediction on real-time platform (Raspberry Pi 3 B plus)
For efficient consideration, we continue to evaluate actual

running time of the proposed method in resource-limited
embedded platform. In order to realize a real-time HAR
system, we implement two main steps as follows: 1) train
the deep model with C3 block on training set from UCI-
HAR; 2) install this trained model into embedded platform
and run it to acquire sensor input and output a real-time
prediction. The Raspberry Pi 3 B plus with ARM Cortex-A53
and 1GB SDRAM is chosen as our test platform, because
the PyTorch deep learning library has a good combability
with Raspberry PI operating system. A Raspberry Pi-based
program is developed for real-time activity recognition, and
its user interface is shown in Fig.13. We perform timing after
the model is loaded and starts to output a prediction. The two
networks with and without C3 block are compared in Table VI.
It can be seen that the baseline network without C3 block takes
around 73.39∼79.73 ms to process one window. The inference
speed reaches 80.47∼95.49 ms per each window for the same
network structure with C3 block. According to Table III, we
could clearly observe that there is only a slight increase in
computational overhead. The baseline deep network with 6-
layer takes around 145.81∼168.3 ms to process one window.
All in all, the C3 method is able to strike a better trade-off
between accuracy and computational cost.

Fig. 13: Actual operation on Raspberry Pi 3 B plus system

TABLE VI: Inference speed of actual operation

Model Inference Time (Window/ms)

3-layer CNN (Baseline) 73.39∼79.73
3-layer CNN + C3 80.47∼95.49

6-layer CNN 145.81∼168.3

V. CONCLUSION

In this paper, we first introduce an effective and efficient
network block in sensor based HAR scenario, called as
cross-channel communication, i.e, C3. Most existing CNNs
process sensor input by extracting channel-wise features, and
the information from each channel can only be hierarchically
propagated, which overlooks information exchange among all
channels. In C3, all channels at the same layer are able to have
a more comprehensive interaction by graph neural network
to learn activity features, which improves the representation

ability of the network. We show the advantages of C3 on a
large variety of HAR tasks, which enables shallower CNNs
to aggregate more useful information and surpasses baseline
deep networks and other competitive methods. We hope that
the analyses of C3 may encourage further advances in deep
HAR research.
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