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Abstract— Recently, the state-of-the-art performance in
various sensor-based human activity recognition (HAR) tasks has
been acquired by deep learning, which can extract automatically
features from raw data. In standard convolutional neural net-
works (CNNs), there is usually the same receptive field (RF)
size of artificial neurons within each feature layer. It is well
known that the RF size of neurons is able to change adaptively
according to the stimulus, which has rarely been exploited in
HAR. In this article, a new multibranch CNN is introduced,
which utilizes a selective kernel mechanism for HAR. To the best
of our knowledge, it is for the first time to adopt an attention
idea to perform kernel selection among multiple branches with
different RFs in the HAR scenario. We perform extensive
experiments on several benchmark HAR datasets, namely, UCI-
HAR, UNIMIB SHAR, WISDM, PAMAP2, and OPPORTUNITY,
as well as weakly labeled datasets. Ablation experiments show
that the selective kernel convolution can adaptively choose an
appropriate RF size among multiple branches for classifying
numerous human activities. As a result, it can achieve a higher
recognition accuracy under a similar computing budget.

Index Terms— Attention, convolutional neural network (CNN),
human activity recognition (HAR), kernel selection, sensor.

I. INTRODUCTION

W ITH the continuous technological advancement, ubiq-
uitous sensing, which aims to extract knowledge from

raw data acquired by pervasive sensors, has become a new
research hotspot [1]. In particular, the current sensing devices,
such as fitness trackers, smartwatches, or phones that incor-
porate various inertial sensors, such as accelerometers and
gyroscopes, have been widely applied for analyzing numerous
human activities [2]. This opens up a new research area
within intelligent applications, in which traditional machine
learning (ML) algorithms have been utilized to recognize
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simple or complex human activities. Among these popular
examples are smart homes, health care, human–machine inter-
action, and fitness tracking applications [3]. For example,
smart homes could be very beneficial for residents to enhance
their living quality. In the smart home scenario, Zhang et al. [4]
proposed a novel knowledge-based approach for multiagent
cooperation, which is able to accurately recognize multiple
activities, where service robots can offer proper services
according to recognition results. Chen et al. [5] presented
a novel smartphone-based human activity recognition (HAR)
method that combines handcrafted features and automatic
features to further boost recognition accuracy in HAR. On the
whole, the HAR that uses sensor time series generated by
inertial sensors embedded into wearable devices, such as
smartphones, has become one dominant technique due to its
obvious advantage compared with other sensor modalities,
such as cameras.

Classical ML algorithms, i.e., KNN, SVM, and ensem-
ble learning, have achieved appealing results in inferring
human activities [6]. However, these shallow learning methods
have to heavily rely on handcrafted features, which often
requires specific expert knowledge. Recently, convolutional
neural networks (CNNs) have become one dominant HAR
technique, which can alleviate the manually designed burden
and automatically learn features. Even though CNNs have
significantly surpassed these classical ML algorithms with
handcrafted features, there are still some challenges in the
ubiquitous HAR scenario. For mainstream CNN architectures
for HAR applications, the receptive fields (RFs) within each
feature layer often share the same size, which is hard to collect
multiscale features from various human activities.

In the neuroscience community, it is well known that, for
visual cortical neurons, there are different RF sizes within the
same area, which enables the neurons to collect information
at multiple scales. This mechanism has been exploited in
the computer vision field. For instance, inside an “inception”
building unit, the multiscale features can be aggregated from
multiple kernels with different filter sizes via a simple con-
catenation. Unfortunately, some other RF properties of cortical
neurons, such as adaptive changing of RF size, have not
received much attention in the CNN design. Recent studies
have indicated that the RFs of the neurons within the visual
cortex area can be adaptively modulated according to the
stimulus. The contrast of the stimulus has a potential influence
on the RF size: the smaller contrast usually leads to a larger
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RF size. For existing models, such as InceptionNet [7]–[9],
in which there are multiple kernels with different sizes within
one feature layer, the RF size can be adjusted adaptatively
according to the contents of the input. However, it only aggre-
gates multiscale information linearly from different branches,
which inevitably limits the adaptation ability of neurons.
Recently, several nonlinear approaches [10], [11] have been
proposed to learn multiscale features from multiple paths for
realizing an adaptive RF. Up until now, this mechanism has
rarely been exploited in the HAR scenario. How to collect
multiscale information to classify various human activities
deserves deep studies.

In this article, we, for the first time, present an attention
approach to learn multiscale features among multiple kernels
in the HAR scenario. The adaptive RF is realized via intro-
ducing a selection kernel (SK) strategy, which is composed of
three main parts: Spli t , Fuse, and Select . First, the Spli t part
is in charge of generating multiple paths that have different
RF sizes. Second, in order to obtain a final representation
for kernel selection, the Fuse part plays an important role
in collecting multiscale features from multiple paths. Finally,
an attention mechanism is used in the Select part to generate
selection weights. Extensive experiments are conducted to
show how the neurons in SK convolution adjust adaptively
their RF sizes according to an input to capture multiscale
features from various human activities. The experimental
results indicate that the SK is significantly superior to previous
state-of-the-art (SOTA) models that use the fixed-size kernel,
which is accompanied by only a slight increase in the memory
and computational burden. Comparing with existing work, our
main contribution is threefold.

First, we, for the first time, propose a multibranch con-
volutional network in a wearable HAR scenario, where the
attention idea is used to adaptively select an appropriate
RF size among multiple branches to classify various human
activities.

Second, within the traditional convolution layer, there is
only a fixed RF size to address various human activities. As a
comparison, our method can better understand human activi-
ties via using variable RF sizes. The experimental results show
that there is an outstanding performance improvement for
five benchmark HAR datasets that consist of UCI-HAR [12],
UNIMIB SHAR [13], WISDM [14], PAMAP2 [15], and
OPPORTUNITY [16] at similar computational overhead.

Third, ablation studies are provided to analyze the effect
of several key factors, such as branch number, group number,
and dilation rate in regard to typical challenges in wearable
HAR scenarios. In particular, we show that kernel selection
is more beneficial for learning automatic features via utilizing
variable RF sizes in weakly supervised HAR tasks.

For previous CNNs in the wearable HAR scenario, there
is only a fixed RF within each feature layer. In this arti-
cle, we compute attention weights across multiple branches
with different kernel sizes. Compared with previous attention
methods, the SK allows multiple kernel sizes within each
convolutional layer, in which the attention mechanism is used
to adaptively select the optimal kernel for activity recognition.
In fact, how to adaptively select an appropriate RF size plays

an important role in understanding numerous activities. For
example, when distinguishing the “walking” and “jumping”
activities, the smaller RF is more beneficial for focusing
on the “jumping” activity because the short signal of the
“jumping” activity only appears in a small time interval.
Instead, the larger RF is more beneficial for capturing salient
features of the “walking” activity that often shows up in the
entire window. Even for the simplest recognition task, perceiv-
ing sensor information from very different scales is essential to
understand the human activity. Our performance improvement
can be attributed to the use of adaptive RF, where attention is
utilized to perform the adaptive selection mechanism among
multiple kernels. In other words, our model has a self-adaptive
adjustment ability according to the contextual information of
the input.

We structure the rest of this article as follows. Section II
reviews the recent literature in HAR and multibranch convo-
lution. Section III gives an overview of the proposed HAR
framework. Section IV details several public HAR datasets
and weakly labeled datasets, as well as experimental design.
In addition, experimental comparison and analysis are pro-
vided from several aspects. Finally, our work is concluded
and the future work is discussed in Section V.

II. RELATED WORKS

In this section, recent related works are reviewed from two
aspects—fixed RF algorithms and dynamic RF algorithms.

A. Fixed RF Algorithms

In recent years, CNNs have made remarkable achieve-
ments on sensor-based HAR, which is obviously superior to
traditional ML algorithms that use cumbersome handcrafted
features. For example, in order to maintain scale invariance
character within an acceleration signal, Zeng et al. [17] first
used CNNs to learn discriminative features for recognizing
various human activities. Yang et al. [18] adopted CNNs to
learn automatic features from raw time series, which can be
represented from low to high level in a hierarchical way.
In order to alleviate the burden of sensor data annotation,
Wang et al. [19] presented a soft attention method to classify
human activities in the weakly supervised learning scenario.
Hammerla et al. [20] rigorously explored deep convolutional
and recurrent networks across thousands of recognition exper-
iments on various benchmark HAR datasets to investigate
the applicability of each model for different HAR tasks.
By assembling the time sequence of accelerometer and gyro-
scope into a 2-D activity image, Jiang and Yin [21] proposed
a novel CNN that is able to extract optimal features from the
image for the use of HAR. In the multimodal HAR scenario,
Ordóñez and Roggen [22] presented a DeepConvLSTM net-
work, which combines convolutional and LSTM units for
fusing multimodal sensor information to improve recognition
performance. Hu et al. [23] presented a novel random forests
method that utilizes class incremental learning method for
activity recognition. Qian et al. [24] ensembled convolutional
and recurrent models into a unified framework to automatically
learn useful temporal features, statistical features, and spatial



GAO et al.: DEEP NEURAL NETWORKS FOR SENSOR-BASED HAR USING SELECTIVE KERNEL CONVOLUTION 2512313

correlation features, which are then concatenated into one
feature map for the final activity recognition. Teng et al. [25]
used local error signals to train CNN layer by layer, which can
produce higher classification performance for HAR at a much
lower memory budget. Li et al. [26] proposed a general evalua-
tion framework for HAR, which allows a rigorous comparison
of features learning by various approaches. Tang et al. [27]
introduced a layerwise training CNN with smaller Lego filters
for HAR using wearable sensors, which can greatly reduce
model complexity. Ronao and Cho [28] presented deep CNN
to perform efficient and effective HAR using smartphone
sensors, which provides a way to automatically extract features
from raw time-series signals. Long et al. [29] designed an
asymmetric residual neural network for accurate HAR task.
Ignatov [30] used a CNN that combines automatic features and
handcrafted features to perform real-time HAR tasks from raw
acceleration signals. Zeng et al. [31] embedded two continuous
attention modules into recurrent networks along temporal and
sensor axes, respectively, to improve the understandability
of HAR. In the semisupervised scenario, Alsheikh et al. [32]
presented deep learning models to handle HAR tasks
using spectrogram signals instead of raw acceleration data.
Khan et al. [33] proposed a useful approach to optimize
sampling frequencies of acceleration signals, which can effec-
tively tailor activity inference systems according to particular
scenarios.

Recent studies have indicated that the RF sizes of the
neurons within the visual cortical area can change adaptively
according to the stimulus. The mechanism has not received
much attention in understanding various human activities.
In existing CNN architectures for HAR applications, there
is usually a fixed RF size within the same feature layer for
artificial neurons, which prevents the neurons to collect multi-
scale features at the same processing stage. Thus, it deserves
deep studies into lightweight CNN architectures with multiple
kernels at different scales.

B. Dynamic RF Algorithms

From the biological viewpoint, the RFs of visual cortical
neurons can vary adaptively according to the stimulus. At the
end of the last century, several researchers have found that the
sizes of classical RFs and nonclassical RFs can be adjusted
adaptively via changing the contrast of the stimulus [34]–[36].
Unfortunately, this idea has not been fully exploited in the
model design of deep networks. In the computer vision
field, one important strategy is multibranch convolution [37].
Highway networks [38] were first proposed, which intro-
duce bypassing paths via using a gating unit. Within the
two-branch architecture, the highway networks make train
deep networks with hundreds of layers feasible. This strategy
is further inherited by ResNet [39], in which the bypassing
path is used as an identity mapping. The BlockDrop [40]
used more identical paths to construct major transformation.
In the InceptionNet [7]–[9], multiple branches are linearly
combined with customized kernel filters, which can aggregate
more informative and multifarious features. Recently, attention
has been used to fuse multiple kernels within the same

Fig. 1. Overview of the proposed SK network. The “SKConv” means the
selective kernel convolution.

convolutional layer, which is able to yield the effective RF
with different sizes in the fusion layer [10], [11], [41]–[43].

Despite the success of multiple RFs’ convolutions, their
primary use lies in visual recognition tasks. Although multi-
branch convolutional networks have been extensively studied,
how to select adaptively an optimal RF size to capture various
human activities has not received much attention. In partic-
ular, attention mechanism has rarely been considered for the
selection process in the wearable HAR scenario. In this article,
we first propose a new CNN that has multiple RF sizes within
the same feature layer, where attention is utilized to adaptively
select an appropriate RF size to recognize various activities
according to the content of an input.

III. MODEL

In this part, the kernel selection idea is introduced in the
HAR scenario, where multiple convolution kernels are used
to generate more robust features that enable each neuron to
adaptively choose an appropriate RF size according to the
content of the input. The SK convolution is used as the basic
unit to build an efficient CNN, which is able to aggregate
multiscale information from multiple kernels with different
sizes, e.g., 3 × 1, 5 × 1, and 7 × 1. Instead of linear
concatenation, the softmax attention mechanism is used in the
SK convolution to fuse multiple branches with different kernel
sizes. The effective RF size can be determined according to
attention weights over multiple branches.

A. Efficient Implementation of SK Module

The soft attention idea is used to perform an automatic
selection operation among multiple branches with different
kernel sizes. The SK convolution is used to replace standard
convolution, which can adaptively adjust the RF size during
the convolution process. As can be seen in Fig. 1, a three-
branch case is presented, but two or more branches are also
feasible.

1) Split: For one feature map X ∈ R
C′×H ′×W ′

, in which
C ′ denotes channel number, H ′ denotes height (sensor axes),
and W ′ denotes width (temporal axes), we first split X
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into three transformations F1 ∈ R
C×H×W , F2 ∈ R

C×H×W ,
and F3 ∈ R

C×H×W with different kernel sizes 3 × 1,
5 × 1, and 7 × 1, respectively. In this way, the three
transformations, i.e., F1, F2, and F3, consist of grouped
convolutions [10], [44], batch normalization (BN) [45], and
ReLU activation [46] in sequence. The group number G is
an important factor in grouped convolution, which has first
been proposed in AlexNet [47]. In comparison with ordinary
convolution, the parameter number and computational burden
of the model are divided into G parts, in order to distribute
the deep model over more GPU resources. In our design, both
grouped convolution [10], [44] and dilated convolution [48]
have been integrated into the branches with larger kernel size,
which can avoid heavy model overheads. The dilation D is a
hyperparameter called the dilation rate in dilated convolution.
For convolutional networks, it is an important way to expand
the receptive view. The standard convolution with the kernel
size of 5 × 1 can be replaced by dilated convolution with
the kernel size of 3 × 1 and the dilation size of 2. The
standard convolution with the kernel size of 7 × 1 can be
replaced by dilated convolution with the kernel size of 3 × 1
and the dilation size of 3 and so on. As we have known,
the dilated convolution has lower model complexity. In short,
dilated convolution is a simple but effective idea, which can
be widely used in both cases: a broader view of the input to
capture more contextual information for human activities and
faster run-time with fewer parameters.

2) Fuse: We fuse results from all three branches via
implementing an elementwise summation

F = F1 + F2 + F3. (1)

Recent studies have indicated that global average pooling
(GAP) [10], [49]–[51] can be used to generate channelwise
information. In order to aggregate features more effectively,
we feed the feature F through a simple GAP to infer the
channelwise statistics as m ∈ R

C , and the cth element of m
can be formulated as

mc = AvgPool(Fc) = 1

H × W

H∑

i=1

W∑

j=1

Fc(i, j). (2)

Subsequently, a fully connected (FC) layer is used to
generate a more compact feature map n ∈ R

d×1, which enables
the model to perform the SK operation in an efficient way.
During the dimension reduction, the value of d is controlled
by a reduction ratio r . The compact feature map n and the
reduction ratio r can be computed as

n = FC(m) = ReLU(β(Wm)) (3)

d = C/r (4)

where β refers to the BN operation, W ∈ R
d×C , and r repre-

sents the reduction ratio of the compact feature map n.
3) Select: In this part, we apply soft attention mechanism

for the compact feature map n passed down from the previous
layer, which is able to guide the model to adaptively extract
multiscale information across the channel axis [10], [11], [19].
The softmax attention, that can focus on the important

branches, plays a key role in the adaptive kernel selection

ac = eAcn

eAcn + eBcn + eCcn
(5)

bc = eBcn

eAcn + eBcn + eCcn
(6)

cc = eCcn

eAcn + eBcn + eCcn
(7)

where A, B, C ∈ R
C×d , and a, b, and c are the soft attention

feature maps generated from the split feature maps F1, F2,
and F3. Note that Ac ∈ R

1×d is the cth row of A, and ac is
the cth element of a, likewise Bc, bc, Cc, and cc. The final
feature map U is superimposed by the attention weights with
different convolution kernels on all branches

Uc = ac · F1c + bc · F2c + cc · F3c, ac + bc + cc = 1 (8)

where U = [U1, U2, U3, . . . , Uc], where Uc ∈ R
H×W . Note

that the deduction process can easily extend to other cases
when the branches are two or more.

B. Efficient Implementation of SK Networks

Multiple SK units can be stacked to build an SK net-
work. By replacing standard convolution with SK convolution,
we are able to achieve very compelling results in HAR.
In this article, the shorthand description of the SK network is
Conv64-SKConv128-SKConv256-FC-Softmax. As mentioned
above, there are three important hyperparameters that affect
performance: the branch number M that determines how
many convolution kernels can be selected, and the group
number G and dilation D that control the cardinality of
each branch. The influence caused by their changes will be
discussed in Section IV. Ablation studies are conducted to find
the optimal settings via analyzing the independent contribution
of each part.

IV. EXPERIMENT

At the preprocessing stage, it is an important step to
split sensor time series into a series of windows for activity
recognition. The sliding window with a fixed window length
and overlap has been extensively leveraged to perform seg-
mentation. As a result, the streams of sensor data are often
divided into continuous windows, where each window may be
assigned a specific activity label. For a large variety of HAR
tasks, there is still no clear consensus on which is the optimal
window length to be preferably selected. How does sliding
window affects the activity recognition accuracy still remains
unclear. So far, for what is the optimal window size across
a large variety of HAR tasks, this challenge has been rarely
and vaguely addressed. Online activity recognition focuses on
collecting data and recognizing activities in real time, which
is necessary if one user requires instantaneous feedback from
the system, such as monitoring higher risk patients. There
is great demand for online activity inference, where such
a recognition system can track the execution of the real-
time activity. However, for online recognition, it has to wait
for future data to make the decision. According to common
intuition, for a longer window, the recognition system has to
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TABLE I

SIMPLE DESCRIPTION OF DATASETS

TABLE II

SIMPLE DESCRIPTION OF THE BASELINE CNN AND SK NETWORKS

“wait” a longer time period for a new window to be available
for classifying. It is more beneficial to reduce window length
for faster activity detection, which is accompanied by reduced
computing resources. Instead, raising window length is nor-
mally designed for the recognition of complex activities, which
occurs for a long time period. A tradeoff between inference
time and recognition performance should be considered by the
recognition system. Most existing designs basically depend on
the window length used in the previous literature. To proceed
with fair comparison, we select the same window length in
previous successful cases, in which the specific window length
and overlap on each dataset are shown in Table I [12]–[16].

In addition, we perform the same preprocessing technique,
which has been well established in several benchmark HAR
datasets. For example, a Butterworth low-pass filter with
a cutoff frequency is adopted to remove the gravitational
component from acceleration signals. Sensor data at the begin-
ning and the end of each labeled sample are removed in
order to avoid handling eventual transient activities. Missing
sensor values can be processed by either linear interpolation
or repetition of previous values. By subtracting the mean
and dividing by standard deviation, the heterogeneous sensor
values are normalized into zero mean and unit variance.

We divide the whole experiment into three parts. First,
in order to verify the efficiency of the SK method, extensive
experiments are performed on five benchmark datasets, con-
sisting of UCI-HAR [12], UNIMIB SHAR [13], WISDM [14],
PAMAP2 [15], and OPPORTUNITY [16] in the supervised
HAR scenario. Second, we analyze the effect of the SK
method in the weakly supervised learning scenario. Third,
we do a series of ablation experiments to analyze the attention

weights across multiple branches within the same layer via
changing the three crucial elements mentioned above.

One three-layer CNN is built as our baseline, in which
the SK convolution is used to replace standard convolution at
the second and third layers. Recently, squeeze-and-excitation
networks (SENets) [51] have introduced an effective, light-
weight mechanism to recalibrate the feature map via chan-
nelwise importance, which has achieved SOTA performance.
We also compare our method with SENet [51]. The batch size
and the initial learning rate are shown in Table II. The learning
rate is set to decay exponentially. The Adam optimization
method and BN are used to train our model.

A. Experiment Results and Performance Comparison

In Table I, we summarize various attributes of the five
public HAR datasets and the weakly labeled dataset. The
sliding window method was used to process datasets. Table II
illustrates the shorthand structures of the model design. Exper-
imental results are demonstrated in Table III, which includes a
comprehensive list of the recognition accuracy obtained from
past published SOTA methods.

1) UCI-HAR Dataset [12]: In order to test various ML
algorithms in the HAR scenario, the researchers in the Uni-
versity of California at Irvine (UC Irvine) recruited 30 subjects
to collect this dataset. All subjects whose age is from
19 to 48 years were asked to wear a smartphone (Samsung
Galaxy S II) on their waists. One three-axis accelerator
embedded into the smartphone was used to generate sensor
time series, which is sampled at a frequency of 50 Hz. This
dataset contains six different kinds of ADLs, such as “sitting,”
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TABLE III

ACCURACY (%) PERFORMANCE OF MODELS ON VARIOUS DATASETS

Fig. 2. Test errors of different models on multiple public datasets.

“lying,” “standing,” “walking upstairs,” “walking downstairs,”
and “walking.”

The SK model is first compared with baseline and SENet.
According to a test error, what we can see in Fig. 2 is
that the SK performs the best among the three algorithms,
which is able to yield 1.10% and 0.61% accuracy gains
with negligible computational overhead. We also compare our
accuracy with previous SOTA results that use fixed kernels.
Performance comparisons are listed in Table III. To the best
of our knowledge, the existing SOTA result on the UCI-
HAR dataset is 96.98% [25]. Our result obtained from the SK
method is best reported, which outperforms the SOTA result
with an 0.23% accuracy improvement.

2) UNIMIB SHAR Dataset [13]: This dataset was collected
by the researchers from the University of Milano-Bicocca.
This new dataset is designed for detecting various “falling”
activities. A smartphone with the Android operation system

was adopted to collect data from 30 subjects whose ages range
from 18 to 60 years. All subjects participating in the data
collection were asked to wear smartphones in their right and
left pockets. The sampling rate of the sensor signal is 50 Hz.

Fig. 2 displays the test error curves on the UNIMIB SHAR
dataset, which indicates that the SK model is superior to
baseline, as well as SENet. We also compare our recognition
accuracy with several previously published results that use
deep learning techniques, and performance comparisons are
shown in Table III. The highest reported accuracy to our
knowledge is 76.04% using dual residual networks [29].
Remarkably, our model outperforms the dual residual network
by above absolute 0.80% with comparable complexity.

3) WISDM Dataset [14]: In this dataset, one triaxial
accelerometer sensor embedded in an Android smartphone is
used to generate sensor time series. In supervised conditions,
wearing the smartphone in front leg pocket, each subject car-
ried out six common activities, namely, “walking,” “jogging,”
“going upstairs,” “going downstairs,” “sitting,” and “standing.”
The sampling rate of the sensor signal is 20 Hz. At a 95%
overlapping rate, a 10-s window is shifted over sensor time
series to generate samples.

In comparison with baseline and SENet, Fig. 2 indicates
that the SK method clearly works better for the tested archi-
tectures, which achieves lower test errors. Table III shows that
the adaptive kernel selection is able to produce 1.30% and
0.71% relative accuracy gains with negligible computational
overhead. We also compare the SK method with previously
published results that use convolutional networks. The best
reported accuracy on the WISDM dataset, to the best of our
knowledge, is 97.51% using deep CNNs [32]. Our result
obtained from the SK method is the best.

4) PAMAP2 Dataset [15]: In this dataset, six subjects who
wear three IMUs take part in the data collection process.
The three IMUs consisting of accelerometer, gyroscope, and
magnetometer are fixed to each subject’s chest, wrist, and
side’s ankle, respectively. Each subject was asked to perform
12 protocol activities (“lying down,” “standing,” and so on)
and six optional activities (“watching TV,” “folding laundry,”
and so on). The sampling rate of IMUs is 100 Hz, which
is further subsampled into 33.3 Hz. At a 78% overlap rate,
a 5.12-s time window is utilized to slide over the sensor time
series, which produces around 473k samples.

We plot the test error curves of three compared architectures
in Fig. 2, which shows that the SK is consistently able to
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Fig. 3. UI of the acquisition software HascLogger.

achieve lower test errors. The SK not only boosts the accuracy
of baseline significantly but also outperforms SENet. Despite
multiple paths, there is only a slight increase in computational
burden. The SK convolution is compared with other SOTA
algorithms. As can be seen in Table III, the SK performs the
best among all the algorithms.

5) OPPORTUNITY Dataset [16]: In the dataset, each vol-
unteer was instructed to carry out common kitchen activities at
five runs. Sensor recordings with 113 dimensions are collected
through inertial sensors placed on four subjects, in which the
IMUs are placed at 12 on-body positions, i.e., the back and
both feet. For a fair comparison, we use the same subset in the
recent OPPORTUNITY challenge, where 17 mid-level human
gestures are annotated and null class is also considered. The
sampling rate is 30 Hz. The window with a fixed size of 1 s
is moved over sensor time series with 50% overlap.

Performance comparisons on the OPPORTUNITY dataset
are illustrated in Fig. 2. We can find that the SK method
achieves lower test errors compared with baseline and SENet.
Because the OPPORTUNITY dataset is highly imbalanced
where the Null class accounts for more than 75% of the
whole dataset, recent related work also used the weighted
F1 score as a primary performance metric (especially for
OPPORTUNITY). In order to proceed with fair comparison,
we compute the weighted F1 score on the OPPORTUNITY
dataset. We mark the results with the symbol “∗.” We compare
our method with other SOTA methods in Table III. What we
can see is that the recognition performance of SK is superior
to those of the other SOTA methods. In terms of accuracy,
our SK method surpasses Hu et al.’s result [23] by 3.91%.
In terms of the weighted F1 score, our SK method surpasses
Qian et al.’s results [24] by 0.31% (the same result is also
reported by Hammerla et al. [20]). There is only a slight
increase in the number of parameters caused by multiple paths.
In particular, compared with [24] that uses ensembled models,
our SK model is more lightweight.

6) Weakly Labeled Dataset: This dataset was collected
using an application software called HascLogger, and its user
interface (UI) is presented in Fig. 3. Wearing the smartphone
in the right trouser pocket, ten subjects were instructed to
carry out five kinds of daily activities, such as “walking” and
“jogging.” Among these activities, “walking” can be deemed
as the background action, while the others are interesting
actions that need to be addressed. The data collection process

Fig. 4. Data collection process of the weakly labeled dataset. The target activ-
ities from left to right are “going upstairs,” “going downstairs,” “jumping,”
and “jogging.”

for one specific subject is presented in Fig. 4. For one specific
action, each subject performs four runs. A 2048-length window
is used to divide sensor signals with a 50% overlapping rate.
Each window may contain one interesting action and other
interesting actions.

In the weakly supervised learning scenario, Fig. 2 shows
that our SK model is superior to baseline and SENet, which
is able to obtain lower test errors. We compare SK with
both models on the weakly labeled dataset, which achieves
2.99% and 2.01% accuracy improvements, respectively. In our
previous sensor-based HAR works [19], the attention weights
are learned via a soft-attention mechanism in order to enhance
the interesting activity and weaken other irrelevant background
activities within each activity window. In this case, there is
only one fixed kernel size for each convolutional layer. In this
article, we compute attention weights across multiple branches
with different kernel sizes. Compared with our previous atten-
tion methods, the SK allows multiple kernel sizes within each
convolutional layer, in which the attention mechanism is used
to adaptively select the optimal kernel for activity recognition.
The proposed SK method surpasses our previous attention-
based CNN [19] by a large margin, which achieves an accuracy
improvement of 2.81% on the weakly labeled dataset.

B. Ablation Study

In this section, to better understand how the SK convolution
works, we conduct ablation studies on several benchmark
HAR datasets to investigate its effectiveness. In fact, there are
two crucial elements, i.e., the dilation D and group number G
to control the RF size. Here, we use a two-branch case to
investigate their influence. In addition, we study the effect
of more branches. The confusion matrices computed on the
PAMAP2 dataset are also provided. In the end, we measure
the inference speed of the proposed method in an Android
platform.

First, we discuss the effect of dilation D and group
number G. For simplicity and without loss of generality,
a two-branch case is considered, in which the setting in the first
branch is fixed with the 3 × 1 filter (G = 32 and D = 1).
Under similar model complexity, the RF size in the second
branch can be adjusted as follows: 1) increase the dilation D
while keeping the group number G fixed and 2) simultaneously
increase the dilation D and filter size.

The optimal setting in the second branch is illustrated
in Table IV, in which the setting of the first branch keeps
fixed. Here, the “Final kernel size” represents the approximate
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TABLE IV

RESULTS OF THE SK NETWORK WITH DIFFERENT GROUP NUMBERS
AND DILATION RATES ON THE WISDM DATASET

TABLE V

RESULTS OF THE SK NETWORK WITH DIFFERENT

BRANCHES ON THE WISDM DATASET

kernel size that is acquired from dilated convolution. It can be
seen that the best result is 98.13% with 3 × 1, D = 2, and
G = 32. The second best result is 98.12% with 5 × 1, D = 1,
and G = 32. The result suggests that using different kernel
sizes is more beneficial due to the aggregation of multiscale
features. If there are the same kernel size in two branches,
it may undermine the final classification results. For the two
optimal configurations, i.e., the kernel size 5 × 1 (D = 1)
and the kernel size 3 × 1 (D = 2), there is a slightly lower
model complexity for the latter. That is to say, despite the same
RF, the smaller kernel with various dilations has a significant
advantage over the larger kernel without dilation in terms of
performance and model complexity, which agrees well with
the basic principle of the CNN design.

We next compare the performance when using more
branches, in which there may be two or more kernels and
their size may be larger than 3 × 1. Due to the limitation of
search space, we only consider five-branch case, where the
kernel sizes are 3 × 1, 5 × 1, 7 × 1, 9 × 1, and 11 × 1,
respectively. Specifically, the dilated convolution is used to
realize large kernels as indicated above. G is set to 32. What
we can see in Table V is that the classification performance
increases at first and then decreases with the increase in the
branch number M . The results in the one-branch case (M = 1)
are the worst. Due to the use of multiple kernels, the SK is
able to achieve appealing results via performing the adaptive
selection among multiple branches. The best result is 98.19%
that corresponds to the four-branch case (M = 4). The second
best result is 98.15% that corresponds to the three-branch
case (M = 3). There is a negligible performance gain from
M = 3 to M = 4. In the case of M = 5, the accuracy rapidly

TABLE VI

RESULTS OF THE SK NETWORK WITH DIFFERENT
REDUCTION RATIOS ON THE WISDM DATASET

Fig. 5. Attention weights for randomly sampled “going upstairs” with three
differently sized targets (1.0×, 2.0×, and 4.0×).

decreases to 97.83%. In order to better balance accuracy and
efficiency, the three-branch case should be preferred.

Second, the dimension of the compact feature map n, which
is generated by the FC layer in SK convolution, can be
adjusted by the reduction ratio r . In order to analyze the
effect of the important hyperparameter, we conduct extensive
experiments on the WISDM dataset [14] via using different r
value with M = 4 and G = 32. The comparisons in Table VI
reveal that the accuracy does not decrease monotonically with
the increase in r . It is likely to be attributed to the reason
that overfitting case occurs due to channel interdependencies
during the training stage. In particular, it can be seen that the
reduction ratio r = 32 is able to obtain the best performance
in terms of accuracy.

Third, to better comprehend how selective kernel mech-
anism works, the attention weights of one target activity
with different scales were analyzed in Fig. 5. For example,
“going upstairs” can be selected as the target activity from the
weakly labeled dataset, where “walking” can be seen as the
background activity. The target activity can be progressively
enlarged from 1.0× to 4.0× via a central cropping and
subsequent resizing (top in Fig. 5). The attention weights for
the large kernel 5 × 1 are shown (bottom left in Fig. 5).
For both the kernels (5 × 1 and 3 × 1), their difference is
calculated according to the mean attention weights across all
channels in two SK convolution layers, respectively (bottom
right in Fig. 5). The figure shows that the attention weights
for the large kernel 5 × 1 increase when the target activity
enlarges. The result suggests that the RF size within the
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Fig. 6. Mean and standard deviation of attention weights across all test
examples on three branches.

neurons in the SK model can change adaptively as the scale of
the target activity varies, which agrees with our expectation.

Fourth, in order to support our conclusion, we continue to
perform ablation experiments on the weakly labeled dataset.
As introduced, “walking” is seen as a background activity in
this dataset, which is not assigned a specific label. Without loss
of generality, we select two target activities, i.e., “jumping”
and “jogging” to perform a comparison. The mean and the
standard deviation of attention weights across 20 test examples
on three branches are illustrated in Fig. 6. For the “jumping”
activity that occurs for a short time period, it can be seen that
the small kernels 3 × 1 and 5 × 1 contribute more to output
classification. Instead, for the “jogging” activity that takes
place for a long time period (nearly entire window), we could
clearly observe that the larger kernel 7 × 1 plays a more
important role in activity recognition. The results further verify
that the neurons in the proposed SK model have adaptive RF
size for different activities, which is in good line with our
conclusion.

Fifth, in the existing selective attention mechanisms,
the SENet [51] is adopted to compute kernel attentions,
in which the global feature information is first squeezed by
GAP, and then, two FC layers followed by softmax are used
to generate attention weights over multiple output channels.
Different from SENet [51], dynamic convolution tech-
nique [11] tends to compute attention over multiple convo-
lution kernels that share the same kernel size. Different from
SENet [51] and dynamic convolution [11], the SK computes
attentions over multiple branches with different kernel sizes.
The advantage of the SK lies in that it can choose appropriate
RF sizes in an adaptive manner. Performance comparisons
show that the SK is able to consistently outperform SENet.

TABLE VII

COMPARISON OF THE SK NETWORK WITH OTHER SELECTIVE
ATTENTION MECHANISMS ON THE UCI-HAR DATASET

Fig. 7. Performance comparisons when SK is integrated into VGG and
ResNet.

Fig. 8. Opportunity’s F1 score on DeepConvLSTM and DeepConvLSTM
with SK convolution.

In addition, we also compare the SK and dynamic convolution
on the UCI-HAR dataset [12]. From the results in Table VII,
it can be seen that the SK can achieve more appealing results
than dynamic convolution due to its adaptive RF size, which
can better perceive contextual information of sensor time series
for classifying human activities according to an input.
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Fig. 9. Confusion matrix for the PAMAP2 dataset between the baseline, the baseline with SE blocks, and the SK networks from left to right. (a) Baseline.
(b) Baseline + SE blocks. (c) Baseline + SK convolutions.

Sixth, the SK can be integrated into convolutional networks
and their variants, such as VGG [52] and ResNet [53]. To eval-
uate the generality ability of our method, we further conduct
ablation experiments on the OPPORTUNITY [16] dataset.
We use two classic models, i.e., VGG [52] and ResNet [53],
as baselines. We add the SK submodule to two baseline
models in the same way as mentioned above. The comparisons
between baselines and those combined with the SK of four
branches (M = 4) are illustrated. As can be seen in Fig. 7,
our method is able to achieve significantly better classifica-
tion performance at almost similar computational overhead
when integrated into VGG and ResNet. In order to further
evaluate the generality ability of our method, we integrated
the SK into the DeepConvLSTM. Ordóñez and Roggen [22]
proposed to combine convolutional and LSTM layers to learn
temporal features between subsequent windows, which can
achieve better results than RNN or LSTM alone. We run the
DeepConvLSTM code on the OPPORTUNITY [16] dataset.
For a fair comparison, we select the same values used by
Ordóñez and Roggen [22]. That is to say, the sensor signals
are divided into smaller fixed-length windows of 500-ms
duration with 50% overlap. The results in Table VIII show
that our baseline DeepConvLSTM can acquire an F1 score
of 91.36%, which is very close to the result reported in
the DeepConvLSTM [22]. When applying the SK method,
we can further improve the F1 score from 91.36% to 93.15%,
which yields a 1.79% performance gain. The test F1 score
curves are also shown in Fig. 8. The results also indicate
that smaller windows are more beneficial for the baseline
DeepConvLSTM, which enables recurrent networks to better
capture the temporal correlation between subsequent windows.

Seventh, we further perform comparisons via computing the
confusion matrices on the PAMAP2 dataset. Due to confusion
between two very similar activity classes, many of the mis-
classifications occur. This may be attributed to the reason that
they have very similar vibrations in signal waveforms. For
“rope jumping” and “walking” that were previously perceived
to be very difficult to distinguish, Fig. 9 shows that baseline
makes 79 errors, while SK convolution misclassifies only
50 activities, which confirms the superiority of the proposed
method in recognition accuracy.

Fig. 10. Demo Application on mobile phone (Google Nexus 6).

Eighth, in order to evaluate actual inference speed of the
SK network, we transfer two-branch SK model with the kernel
sizes of 3 × 1 and 5 × 1 (D = 2) and the three-branch SK
model with the kernel sizes of 3 × 1, 5 × 1 (D = 2), and
7 × 1 (D = 3) into an Android smartphone. Specifically,
our experiment is implemented on a Google Nexus 6 phone
with Android OS (11.0.0). We build an Android software to
evaluate the performance, and the software’s UI is illustrated
in Fig. 10. The three networks are trained on the WISDM
dataset [14], which are then converted into a .pb file and
added as a Gradle dependence (Java) via applying into Android
Studio. Someone can perform the target activity and get the
classification result after loading the saved model. It can be
seen from Table IX that, despite better recognition accuracy,
there is only a slight increase in the inference speed.

Ninth, in order to evaluate the robustness of the proposed
method, we choose the Raspberry Pi 3B plus with ARM
Cortex-A53 and 1-GB SDRAM as our test platform, where
the PyTorch deep learning library has good compatibility with
the Raspberry PI operating system. To be specific, two main
steps are implemented as follows: 1) train the network with
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TABLE VIII

RESULTS OF DEEPCONVLSTM AND DEEPCONVLSTM WITH SK
CONVOLUTION ON THE OPPORTUNITY DATASET

TABLE IX

INFERENCE SPEED ON GOOGLE NEXUS 6

Fig. 11. Demo Application on Raspberry Pi 3B plus.

TABLE X

INFERENCE SPEED ON RASPBERRY Pi 3B PLUS

SK block on the training set from WISDM and 2) load this
trained model into the embedded platform, run it to read
one sensor sample, and perform a real-time prediction. The
timing is done after the model is loaded and starts to output
a prediction. A Raspberry Pi-based program is developed for
real-time activity recognition, and its UI is shown in Fig. 11.
We set up Wi-Fi on the Raspberry Pi and wirelessly connect
it to the remote computer. The Raspberry Pi platform with an
accelerometer sensor ADXL345 is attached to the subject’s
front leg pocket. As can be seen from Table X, the baseline and
the SK model take around 72.63–80.21 and 105.23–130.42 ms,
respectively, to predict one window. In the case of WISDM,
a 10-s window with a 95% overlapping rate is moved to
segment sensor time series. Since the sliding step is equal
to 500 ms, the recognition system needs to wait for 500 ms
to process the next window. According to Table X, we could
clearly observe that the proposed SK method can meet the
runtime requirement on the embedded system.

V. CONCLUSION

In recent years, CNNs have become one dominant technique
in the deep learning community, which results in appealing

results in the HAR scenario. However, for most existing CNN
architectures, the kernel size is usually fixed within the same
feature layer, which fails to capture multiscale information
from various human activities. In this article, a kernel selec-
tion approach is first proposed, which is able to aggregate
multiscale information from multiple branches in the HAR
scenario. A soft attention mechanism is utilized to adaptively
fuse features from multiple kernels. Extensive experiments
are conducted on several benchmark HAR datasets, which
indicates that the SK convolution outperforms other SOTA
methods with a similar budget in parameter and computation
cost. In addition, we analyze the independent contribution
of several crucial elements within kernel selection to better
understand its mechanism.
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