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Abstract—Activity recognition plays a critical role in various
applications such as medical monitoring and rehabilitation. Deep
learning has recently made great development in wearable
based human activity recognition (HAR) area. However, real
HAR applications should be adaptive and flexible to available
computational budget. So far, this problem has rarely been
explored. In contrast to existing deep HAR researches focusing
on static networks, this paper aims to investigate adaptive net-
works, which can adjust their structure conditioned on available
computing resource to trade off between accuracy and speed.
We for the first time present an adaptive convolutional neural
network by dynamically modifying network width. Specifically,
first, instead of normal convolution, the network is stacked
by lower-triangular convolutional layers in order to remove
the impact of activation statistics caused by varying widths.
Second, instead of fixed sampling, we perform random sampling
over width, which can provide smooth control for trade-off
between accuracy and speed. As a consequence, the networks
with different widths are simultaneously trained as subnetworks
by accumulating their losses during each iteration. On multiple
HAR datasets such as UCI-HAR, PAMAP2 and OPPORTUNITY,
extensive experiments verify that the proposed approach can
consistently provide further improved efficiency on top of state-
of-the-art CNNs for HAR. Finally, evaluations are conducted
on a Raspberry Pi platform to demonstrate its usefulness and
practicality.

Index Terms—Sensor, convolutional neural networks, activity
recognition, deep learning, wearable device

I. INTRODUCTION

DURING the past decade, there is a rapid development in
Internet of Things (IoT) and sensing technology, which

enables various motion sensors such as accelerometer and
gyroscope embedded in smartphones or other wearable devices
to record physical activities for automatic recognition task.
Due to small size and low cost, sensor based human activity

The work was supported in part by the National Science Founda-
tion of China under Grant 61962061 and the Industry-Academia Co-
operation Innovation Fund Projection of Jiangsu Province under Grant
BY2016001-02, and in part by the Natural Science Foundation of Jiangsu
Province under grant BK20191371. (Corresponding author: Lei Zhang.(e-
mail: leizhang@njnu.edu.cn))

Xing Wang, Lei Zhang, Wenbo Huang and Shuoyuan Wang are with
School of Electrical and Automation Engineering, Nanjing Normal University,
Nanjing, 210023, China.

Hao Wu is with School of Information Science and Engineering, Yunnan
University, Yunnan, 650500, China

Jun He is with School of Electronic and Information Engineering, Nanjing
University of Information Science and Technology, Nanjing, 210044, China.

Aiguo Song is with School of Instrument Science and Engineering, South-
east University, Nanjing, 210096, China.

recognition (HAR)[1], [2], [3] has played an indispensable
role in human-computer interaction and ubiquitous computing,
which has gained a lot of attention in various application
scenarios such as wellbeing, smart home, sports monitoring,
medical monitoring and rehabilitation[4], [5]. In essence, HAR
can be treated as a typical pattern recognition problem[6],
[7]. Traditional recognition algorithms such as decision
tree, support vector machine and naive Bayes have been
devoted to the design of shallow handcrafted features[8],
which heavily rely on specific domain knowledge or human
experience. However, such handcrafted features such as the
mean, variance, frequency and amplitude of Fourier transform
are hard to infer complex human activities, which leads to a
lower chance to build a successful HAR system.

Deep learning, especially convolutional neural network
(CNN)[9] has recently provided an alternative to overcome
above limitations. In deep learning, the feature extraction and
inference model often can be performed simultaneously. The
high-level features can be extracted automatically through
stacking deeper layers rather than being manually designed,
which makes it very suitable for inferring complex activities.
Although CNN has significantly improved the accuracy of
state-of-the-art HAR algorithms[10], [11], [12], the low-
latency or realtime feedback may be very critical. Besides
accuracy, computational complexity is another key factor
to be considered. Actually, highly miniaturized wearable
devices often have a very limited computational budget.
Real HAR applications typically pursue best accuracy under
a resource-constrained platform, where an accuracy/speed
trade-off should be preferably considered.

On the other hand, in order to deploy HAR applications
under realistic conditions, one has to maintain model
flexibility to adapt to varying computational budgets (e.g.,
varying hardware platforms)[13], [14]. Thus, fast inference
alone is not always sufficient. For example, as far as we
know, there are over 20 brands (e.g., iPhone, Samsung
and Google) of phones, which have a limited yet variable
computing power. It will lead to drastically different inference
times, even for the same model. For satisfactory inference
speed, low-end phones have to run smaller models with lower
accuracy due to limited computing power, while high-end
phones can run larger models to produce higher accuracy. As
a result, the inference time constraint has to be conditionally
dependent for specific hardware platforms. Even for the same
phone, the computing power could potentially vary due to
resource consumption caused by other running apps. On the
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whole, real HAR algorithms must be not only simply fast,
but also flexible to varying computational budgets, which
have been rarely explored in HAR area.

Our core research motivative is to design an adaptive
deep network in HAR scenario, which can adapt to varying
computational budgets. A common idea is to modify width
(the number of active channels), instead of depth (the number
of layers). Specially, the simplest strategy is to train N
networks at different widths, which can dynamically perform
switch between them for trade-off between accuracy and
speed. However, there are obvious drawbacks for the N-Width
strategy. Due to varying widths, the activation statistics in
each sub-network is variable. Thus, N networks have to
be separately trained. If N is small, one only can provide
coarse-grained control for accuracy-speed trade-off. Instead,
if N is increased to a fine-grained level, it will lead to a great
increase in training burden. As a consequence, it needs to
store multiple offline trained versions, which will inevitably
lead to larger memory footprint. Moreover, it takes necessary
communication cost (e.g., time) to download new models for
switch.

In this paper, we propose an adaptive deep network in HAR
scenario, which can maintain model flexibility to adapt to
varying computational budgets at runtime, without the need of
downloading new models for switch on wearable devices. We
address above challenges from two technical aspects. First,
instead of N fixed sampling, we perform random sampling
over width, where the networks at arbitrary width can be
simultaneously trained as subnetworks by accumulating their
losses during each iteration. In other words, we only need
to train a single network executable at any width, which
can provide a smooth control over accuracy/speed trade-off.
Second, to avoid potential performance degradation caused by
varying activation statistics at any width, the network is built
using lower-triangular convolutional layers rather than normal
convolution. Evaluations are performed on multiple public
HAR datasets, namely UCI-HAR, PAMAP2, UniMib-SHAR,
OPPORTUNITY and WISDM. In contrast to static models,
the proposed model can provide a smooth control over
accuracy/speed trade-off, which can dynamically adapt deep
HAR to available computing resource. The contributions of
this paper are three-fold:

First, we for the first time propose an adaptive deep
network executable at any width for HAR, which can provide
a smooth control over accuracy/speed trade-off via random
sampling approach.

Second, when switching at arbitrary width, we avoid
potential performance degradation caused by varying
activation statistics via replacing normal convolution with
lower-triangular convolution.

Third, without need of downloading new models, we
perform actual evaluations at test time on a Raspberry Pi
platform, which verify the practibility and usefulness of the
proposed model.

The rest of this paper is structured as follows. Section II
reviews the related works. Section III presents the structure
of adjustable CNN in HAR scenario. Section IV details
experimental setup, performance comparison and analysis,

which indicates the advantage of our proposed model. Finally,
conclusions are made in Section V.

II. RELATED WORKS

Recent developments in deep learning have significantly
improved the accuracy of state-of-the-art HAR algorithms,
which can greatly alleviate the burden of handcrafted feature
designing procedures. In HAR scenario, Zeng et al.[9] at
the earliest time exploited CNN to automatically extract
the local dependency and scale invariant features from raw
acceleration time series. Yang et al.[15] presented a novel
CNN constructed by multiple iterations of convolutional and
pooling layers, where convolution and pooling operation
are combined for feature extraction of HAR. Hammerla et
al.[16] evaluated various deep, convolutional and recurrent
approaches on several benchmark datasets, which shows
how they surpass traditional shallow machine algorithms for
a large variety of HAR tasks. Huang et al.[17] introduced
a shallow CNN that uses cross-channel communication in
HAR scenario, where graph neural network is used to realize
a comprehensive interaction between different channels for
capturing discriminative features of raw sensor signals. In
order to capture temporal dynamics for HAR, Ordóñez
et al.[18] proposed a novel network architecture called
DeepConvLSTM consisting of convolutional and recurrent
units, which significantly outperforms CNN alone. On the
whole, those above network architectures are often static.
However, most wearable devices only have a limited, yet
dynamic computing power due to their varying hardware
platforms. Thus, HAR algorithms should be adaptive or
flexible to available computational budgets. It deserves deeper
research into adaptive network architectures for HAR, which
so far has been rarely explored.

In another line of research, deep learning has made
major breakthroughs in machine vision, in which the
trade-off between speed and accuracy is at the forefront of
this research. Many previous works have been devoted to
designing lightweight networks. For example, Howard et
al.[19] and Sandler et al.[20] presented a series of lightweight
networks called MobileNet, which can adaptively scale
model size for different vision tasks by adjusting width and
resolution multipliers. Zhang et al.[21] and Ma et al.[22]
proposed a family of small networks called ShuffleNet,
which can effectively decrease computational overhead by
exploiting channel shuffle and pointwise group convolution.
There are also other model compression techniques known
as weight or channel pruning, decomposition, and knowledge
distillation[23]. Despite their success, these above methods
make the trade-off decision during network design or training
stage. Instead, we aim to trade off accuracy and speed at
inference time. Several prior approaches have been proposed
for inference time control by modifying network depth. One
mainstream idea is to perform early-exits or early-stopping
inference according to available computing resource[24]. In
order to reduce computation, other research efforts focus on
layer skipping or dropping[25], [26]. These depth-modulation
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Fig. 1. The overview of tunable-width HAR model using lower-triangular convolution

techniques are orthogonal to resource-constrained control.
Recently, the idea of width-modulation has been exploited

to control the trade-off between accuracy and speed. Using
pruning technique, Kim et al.[27] trained one network in terms
of a specific number of sparsity ratios, which accordingly
provides a fixed set of internal networks. All these networks
are jointly optimized to form a final N-in-1 nested network,
which enables multiple hierarchical classification tasks
through a single network. Similarly, Yu et al.[28] trained
one network with multiple versions of a specific number of
predefined N-widths, which can be switched during inference
time. As a result, they only can provide coarse-fined control
due to a limited number of switchable networks, where
multiple copies of the trained model need to be stored.
From the viewpoint of width, Lu et al. first investigated
how it affects the performance of deep networks. Moreover,
they presented a universal theorem for the width-bounded
ReLU networks[29]. Yu et al.[30] and Huang et al.[31]
exploited two-step knowledge distilling technique to train
an Universally Slimmable Network. However, most width-
modulation techniques have been devoted to various vision
applications, which has rarely been exploited in ubiquitous
HAR scenario. Actually, there have always been increasing
demands to deploy HAR system on resource-constrained
wearable devices. While many prior researches have focused
on designing a static deep network for HAR, it is very
infeasible to deploy a single neural network across different
wearable devices with variable computing resource. Because
a new type of device usually requires a new network
architecture, one has to build and train a new model from
scratch. In this paper, we for the first time tackle this challenge
in HAR scenario by designing an adaptive network that can
provide assured performance on available computing resource.

III. MODEL

As indicated above, our research motivative is to train a
single network for HAR task, which can run at arbitrary
width. Without loss of generality, the basic form of feature
aggregation within a specific convolution layer can be
formulated as[23], [32]:

y =
k

∑
i=1

ωixi (1)

where n is the number of channels (width)xi, and wi, i ∈
{1,2, · · · ,k} correspond to the input feature vector and learn-

able coefficient respectively, and y is an output. The network
width plays an important part in trading off accuracy and
speed: the larger number of channels often provides better
accuracy, but sacrifices inference speed. In principle, the
performance of wider networks should be no worse than that
of its slim version, which has been proved by the theory of
channel-wise residual learning[31], [32], [33]:

0 ≤ δk+1 ≤ δk ≤ δk0 , δk =
∣∣∣yn − yk

∣∣∣ ,δk+1 =
∣∣∣yn − yk+1

∣∣∣ (2)

where yk and yk+1 is the sum of the first k and k+1 channels
respectively, i.e., yk = ∑k

i=1 ωixi and yk+1 = ∑k+1
i=1 ωixi. k0

denotes the minimum width. The above inequality 2 indicates
that there is an upper bound δk0 for residual errors between
fully aggregated features yn and partially aggregated features
yk, which continuously decreases as the network width k
increases. As the upper bound exists, a single network could
run at arbitrary width by varying k from k0 to kn. To train
a single network with any width, an intuitive idea is to
accumulate losses randomly sampled from all sub-networks
at arbitrary widths. In order to access all widths, fixing lower
bound (e.g., smallest width 0.125x) and upper bound (e.g.,
largest width 1.0x), we randomly sample n− 2 widths over
the open interval (0.125 ,1.0). At each training iteration,
besides the lower and upper bound, the network is trained
with n− 2 randomly sampled widths by performing gradient
back-propagation from accumulated losses with all widths,
where ground truth is used as training label for HAR.

Actually, the random sampling method can be seen as a
kind of knowledge distillation, which transfers knowledge
learned from full-width network to subnetworks at smaller
widths in each iteration. Specifically, we first train a large
network at full width, then its learned knowledge is transferred
to a small network, which is then trained with predicted
soft labels. Using this rule, we can train the tunable-width
network at largest width, smallest width and other randomly
sampled widths all together during each training iteration.
That is to say, this training idea is naturally supported by
knowledge distillation: the ground truth is directly used to
train the network at largest width, while the predicted label
by the network at the largest width is used as the training
label for the networks at other widths. The experimental
results verifies that the classification accuracies do not decay
rapidly as the network width decreases. This training scheme
can implement well without extra computational and memory
overhead[23], [31].

On the other hand, if the network is switched in a multi-
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width scenario, the issue of varying activation statistics at
different widths has to be considered. For example, if k=1,
the Eq.1 can be explicitly written as[34]:

[y] = [ω11] [x1] = [ω11x1] (3)

and if k=2 and k=3, it is:[
y1
y2

]
=

[
ω11 ω12
ω21 ω22

][
x1
x2

]
=

[
ω11x1 ω12x2
ω21x1 ω22x2

]
(4)

 y1
y2
y3

=

ω11 ω12 ω13
ω21 ω22 ω23
ω31 ω32 ω33

 x1
x2
x3


=

 ω11x1 +ω12x2 +ω13x3
ω21x1 +ω22x2 +ω23x3
ω31x1 +ω32x2 +ω33x3

 (5)

For simplicity and without loss generality, y1 can be
formulated as:

y1 =

 ω11x1
ω11x1 +ω12x2
ω11x1 +ω12x2 +ω13x3

i f k = 1
i f k = 2
i f k = 3

(6)

The expected value of y1 may vary at different widths:

E
[
y{1}

1

]
= E [ω11x1] = µ{1}

1 k = 1

E
[
y{2}

1

]
= E [ω11x1 +ω12x2]

= E [ω11x1]+E [ω12x2]

= µ{1}
1 +E [ω12x2] k = 2

E
[
y{3}

1

]
= E [ω11x1 +ω12x2 +ω13x3]

= E [ω11x1]+E [ω12x2]+E [ω13x3]

= µ{1}
1 +E [ω12x2]+E [ω13x3] k = 3

(7)

Clearly, three cases (k=1, k=2 and k=3) could not follow
the same distribution. In other words, the switch between
multi-width will lead to varying statistics of y1 in batch
normalization[34], which may deteriorate classification
performance. In order to guarantee the same distribution
in two-width or three-width case, one has to ensure that
E [ω12x2] = 0 or E [ω12x2] = E [ω13x3]=0. In a similar way,
the expected value of y2 may vary at different widths:

E
[
y{2}

2

]
= E [ω21x1 +ω22x2]

= E [ω21x1]+E [ω22x2]

= E [ω21x1]+µ{2}
2 k = 2

E
[
y{3}

2

]
= E [ω21x1 +ω22x2 ++ω23x3]

= E [ω21x1]+E [ω22x2]+E [ω23x3]

= E [ω21x1]+µ{2}
2 +E [ω23x3] k = 3

(8)

To ensure E
[
y{2}

2

]
=E

[
y{3}

2

]
, one has to set E [ω23x3]=0. As

a result, the weights in convolutional layers can be formulated

as: ω11 0 0
ω21 ω22 0
ω31 ω32 ω33

 (9)

Without loss generality, when above two-width or three-
width case is extended to multi-width case, one feasible
solution is to constrain the weight matrices in convolutional
layers to be lower-triangular[32], [34], [35], which can
address this problem well. The overview of the design is
illustrated in Fig.1. Thus, we aim to design a convolutional
network consisting of triangular layers (Fig.2), which can
run at arbitrary width to perform activity recognition tasks.
The pseudo code in Algorithm 1 summarizes the overall
procedure of model training.

Algorithm 1 Convolutional Network with Tunable Speed-
Accuracy Trade-off
Input: A, Convolutional Network
Input: Eiters, number of training iterations
Input: N, number of randomly sampled width
Input: Lmax, sampled width upper bound, Lmin, sampled

width lower bound
Input: x, training data processed by sliding window, y∗, labels

processed by sliding window
1: Initialize network A
2: for i=1 to Eiters do
3: Load x, y∗

4: Sample N-2 widths between the interval [Lmin,Lmax]
5: S = {Lmin,a1...,aN−2,Lmax}
6: Clearing gradients
7: for j in S do
8: Set network’s width as j
9: y = A(x)

10: Loss = criterion(y∗, y)
11: Loss backward
12: end for
13: Network optimize
14: end for

Fig. 2. Channels connection of lower-triangular convolution at
different widths

IV. EXPERIMENT

In this section, three types of experiments are conducted.
In part one, we aim to analyze how HAR accuracy is affected
as network width is varied. In order to do this, we measure
the effect of triangular convolutional layer at different widths.
In part two, we perform further ablation studies with regard
to the statistics of batch normalization[34]. We also analyze
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TABLE I
SIMPLE DESCRIPTION OF DATASET

Attribute
Dataset UCI-HAR WISDM PAMAP2 UniMib-SHAR OPPORTUNITY

Categories 6 6 12 17 18
Windows Size 128×9 200×3 171×40 151×3 40×113
Overlap rate 50% 95% 50% - 50%

Sampling rate 50Hz 20Hz 100Hz 50Hz 30Hz

TABLE II
SIMPLE DESCRIPTION OF MODEL’S STRUCTURE

Dataset
Layers Input Size Layer1 Layer2 Layer3

Conv1 BN+ReLU Conv2 BN+ReLU+Maxpool Conv3 BN+ReLU+Maxpool
UCI-HAR (none,1,128,9) (none,128,42,9) (none,128,42,9) (none,256,13,9) (none,256,14,9) (none,512,4,9) (none,512,5,9)
WISDM (none,1,200,3) (none,128,100,2) (none,128,100,2) (none,256,50,1) (none,256,51,1) (none,512,26,1) (none,512,27,1)
PAMAP2 (none,1,171,40) (none,128,56,40) (none,128,56,40) (none,256,18,40) (none,256,19,40) (none,512,6,40) (none,512,7,40)

UniMib-SHAR (none,1,151,3) (none,128,74,3) (none,128,74,3) (none,256,36,3) (none,256,37,3) (none,512,17,3) (none,512,18,3)
OPPORTUNITY (none,1,40,113) (none,128,20,57) (none,128,20,57) (none,256,10,29) (none,256,11,29) (none,512,6,15) (none,512,7,15)

TABLE III
SIMPLE DESCRIPTION OF NEURAL NETWORK PARAMETER

Layers
Dataset UCI-HAR WISDM PAMAP2 UniMib-SHAR OPPORTUNITY

conv padding stride conv padding stride conv padding stride conv padding stride conv padding stride
layer1 (6,1) (1,0) (3,1) (3,3) (1,1) (2,2) (6,1) (1,0) (3,1) (6,1) (1,0) (2,1) (3,3) (1,1) (2,2)
layer2 (6,1) (1,0) (3,1) (3,3) (1,1) (2,2) (6,1) (1,0) (3,1) (6,1) (1,0) (2,1) (3,3) (1,1) (2,2)
layer3 (6,1) (1,0) (3,1) (3,3) (1,1) (2,2) (6,1) (1,0) (3,1) (6,1) (1,0) (2,1) (3,3) (1,1) (2,2)

TABLE IV
TEST ACCURACY(%)

Width Mutiplier
Dataset UCI-HAR WISDM PAMAP2 UniMib-SHAR OPPORTUNITY

baseline 96.28 97.32 91.35 74.61 93.48
1.0 96.63 98.04 92.22 75.21 93.56

0.875 96.44 98.27 92.51 75.25 93.59
0.75 96.64 98.13 92.51 75.33 93.49
0.625 96.38 98.04 91.93 75.33 93.45
0.5 96.54 97.86 92.15 75.03 93.25

0.375 96.33 97.45 91.78 74.17 93.12
0.25 96.49 97.40 91.49 74.17 92.82
0.125 95.32 96.36 91.49 73.32 92.68

95.75[36] 93.32[37] 89.30[38] 74.46[39] 91.50[18]
Other Researches 95.18[40] 96.90[41] 89.96[9] 74.66[42] 89.15[43]

96.37[37] 97.50[39] 91.40[41] 74.97[44] 92.7[16]

TABLE V
MAC OF DIFFERENT DATASET

Width Mutiplier
Dataset UCI-HAR WISDM PAMAP2 UniMib-SHAR OPPORTUNITY

0.125 0.855M 0.748M 5.591M 1.038M 3.280M
0.25 3.314M 2.916M 21.504M 3.993M 12.537M
0.375 7.376M 6.504M 47.738M 8.866M 27.812M

0.5 13.042M 11.510M 84.295M 15.655M 49.063M
0.625 20.312M 17.936M 131.174M 24.361M 76.305M
0.75 29.185M 25.781M 188.375M 34.985M 109.537M
0.875 39.662M 35.046M 255.897M 47.525M 148.760M

1 51.743M 45.729M 333.742M 61.982M 193.973M
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the influence of several key factors such as the number of
randomly sampled width (N), width lower bound and width
sampling rule. Finally, the actual operation of adaptive width
network is evaluated on a resource-constrained Raspberry Pi
platform.

A. Datasets

1) UCI-HAR[45]: Wearing a Samsung Galaxy S2
smartphone on the waist, a group of 30 volunteers between
19 and 48 years old joined in the data collection process.
Each volunteer was instructed to perform a set of predefined
activities consisting of Standing, Lying, Sitting, Walking,
Walking upstairs and Walking downstairs. At a sampling
frequency of 50Hz, the triaxial acceleration and angular
velocity signals are recorded by the embedded accelerometer
and gyroscope in the smartphone.

2) WISDM[46]: The WISDM research team members
from Fordham University created the dataset. Wearing an
Android based smartphone in their trouser pants pocket, 29
subjects were supervised to perform six kinds of activities
including Walking, Jogging, Ascending stairs, Descending
stairs, Sitting, and Standing. The accelerometer signals are
collected every 50ms, i.e., 20 samples/second.

3) PAMAP2[47]: The dataset is composed of sensor
recordings collected from 9 volunteers, who were instructed
to perform 18 physical activities, consisting of 12 specific
activities (Walking, Cycling, Rope jumping, etc.) and a few
optional activities (Watching TV, Playing soccer, Car driving,
etc.). Each volunteer wore three Colibri wireless inertial
measurement units (IMU), which were placed over the
dominants chest, hand and ankle respectively. The sampling
rate of 100Hz is down-sampled into 33.3Hz for further
analysis. A heart rate monitor with sampling rate 9Hz is used
to estimate sport intensity.

4) UniMib-SHAR[48]: The dataset is composed of 11771
samples collected from 30 subjects whose ages range between
18 and 60 years. Wearing a Samsung Galaxy Nexus I9250
phone with an accelerometer BMA220 in the front trouser
pocket, each subject performed 8 types of activities of daily
living such as Walking, Standing, Sitting and 9 types of falls
such as Falling leftward, Falling rightward, Falling back and
Syncope. All samples were collected at a frequency of 50 Hz.

5) OPPORTUNITY[49]: The dataset was collected from
various hybrid sensor modalities such as accelerometer,
gyroscope, magnetometer, and video camera. In a breakfast
scenario, 12 volunteers are instructed to perform a specific set
of daily morning activities such as Preparing and Drinking
coffee, Preparing and Eating sandwich, and Cleaning table.
In this paper, we utilize the subset from the OPPORTUNITY
challenge consisting of unsegmented sensor recordings from
4 subjects. Data is collected at a sampling rate of 30Hz by
the body-worn sensors placed on 12 different locations of

human body.

B. Training details

We perform experiments on the five benchmark HAR
datasets: UCI-HAR, WISDM, PAMAP2, UniMib-SHAR,
and OPPORTUNITY. Data preprocessing is a crucial step
in this activity recognition process. Sensor signals are often
involved in various human activities in different contexts,
which have been recorded via hybrid sensor modalities.
The heterogeneous sensor values have to be normalized
into zero mean and unit variance via subtracting the mean
and dividing by the standard deviation. Traditional machine
learning algorithms could not directly handle raw sensor
input, which need to be first segmented via a fixed-length
sliding window. To be specific, fixing an overlap rate, one
can slide window over continuous sensor reading to produce
continuous samples, where each window may be assigned
a specific activity label. As a result, data are divided into
windows of a fixed size and with no inter-window gaps, and
an overlap between adjoining windows is tolerated to preserve
the continuity of sensor signals. Although sliding window has
been normally used to perform segmentation, there is still no
clear consensus on how to select an optimal window size.
Actually, the window size has an important effect on activity
recognition performance[50]. According to our intuition,
reducing the window length will be more beneficial for a
faster activity recognition, as well as reduced computational
cost and energy consumption. Instead, increasing window
length are usually used for the recognition of complex
activities that last a longer time. Actually, most designs
normally rely on figures used in previous works, but with no
strict researches that support them. For fair comparisons, we
still select the same values used in previous HAR literatures.
During data preprocessing stage, several important properties
such as window size, overlap rate and sampling rate are
summarized in Table I. All datasets are divided into three
parts consisting of a training set (70%), a validation set (10%)
and a test set (20%).

All detailed training parameters are provided for
reproducibility. On each dataset, the 3-layer tunable
width network equipped with triangular convolutional layers
is compared with normal baseline CNN. The detailed
descriptions of network architectures are illustrated in Table
II. Each convolutional (Conv) layer is followed by a batch-
normalization (BN) layer andăactivation function (ReLU).
Batch normalization plays a role in standardizing the inputs to
a layer for each mini-batch, which has an effect of stabilizing
the learning process and dramatically reducing the number of
training epochs required to train deep networks. In particular,
three lower-triangular convolutional layers are stacked in order
to remove the impact of activation statistics caused by varying
widths. The max-pooling operation pools a feature map by
taking its maximum values. Two max-pooling operations
are inserted after the second and third convolutional layers.
In the case of activity recognitionătask, the final output
may be further fed into a Softmax layer to produce a class
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probability distribution. We introduce the detailed parameter
settings of low-triangular convolution, such as kernel size,
step length and padding size in Table III. The source code

Fig. 3. Accuracy curves at varying widths

will be available at the website https://github.com/Chauncey-
Wang/Tunable-Speed-Accuracy-Trade-off-for-HAR. During
each training iteration, all networks are trained at eight
random sampling widths. That is to say, we train all eight
widths as sub-networks simultaneously by accumulated their
losses. We use the random sampling strategy as indicated
above in Section III. All networks are trained for 200 epochs
by using an Adam optimizer with batch size of 512. The initial
learning rate is set to 5e-4, which is decayed by a factor of 0.1
every 40 epochs. All experiments are implemented by deep
learning library PyTorch on a workstation equipped with Intel
I7-6850K CPU, NVIDIA GeForce RTX3090 GPU and 64G
RAM. Main experiments results are presented in Table IV at
eight width factors of 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1.0. It can be seen that our tunable width networks

Fig. 4. MAC of different datasets at varying widths

perform as well or better than its normal CNN counterparts.
In terms of accuracy, our models outperform their normal
baselines by 0.35%, 0.72%, 0.87%, 0.60% and 0.08%
respectively at the same width of 1. In an extreme case where
the network width is reduced to 0.125x, there are only 0.96%,
0.96%, 1.29%, 0.80% and 0.08% performance degradation
when compared with 1.0x(Fig.3). As an acknowledged

Fig. 5. Inference time of different datasets at varying widths

limitation caused by the trade-off between accuracy and
speed, the accuracy drops are an expected behavior, which is
totally acceptable for multi-width HAR applications. From an
aspect of computational overhead, it is worthwhile to mention
that the triangular convolutional layer itself can roughly halve
the number of total parameters, where accuracy only slightly
decays as network width decreases. In addition, we also
measure the number of multiply-add operations (MAC) and
inference time(Table V). Due to the lower-triangular design
constrain, the computational complexity is significantly
reduced. As illustrated in Fig.4 and Fig.5, if one decreases
the width factor, the inference time can rapidly decay while
the precisions of prediction still can maintain parity.

C. Albation experiment

In order to explore why the lower-triangular convolution can
perform better in multi-width HAR scenario, we implement
two network architectures: a normal CNN, a tunable width
CNN constructed by lower-triangular convolutional layers. For
simplicity, we train both models on UCI-HAR dataset at four
different widths of 0.25, 0.5, 0.75, 1.0. During training, the
means of 1st-layer and variances of 3rd-layer are accumulated
from batch normalization layer. At different widths, we
compare the means and variances of selected channel. Fig.6
and Fig.7 shows that there is a noticeable deviation of
activation statistics within normal CNN if width is varied,
which is consistent with our expectation. In other words,
different widths produce different activation statistics, which
leads to worse performance. Replacing normal convolution
with lower-triangular convolution, we could clearly see that
lower-triangular weight constrain significantly converges
better, which can help to stable activation statistics. It will
be more beneficial for providing higher and more consistent
validation accuracy when one switches network between
different widths.

We continue to investigate how the number of randomly
sampled widths (i.e., N) affects classification performance,
because too large N will lead to unnecessary training burden.
During each iteration, we train our models on PAMAP2
and WISDM datasets when N is set to 1, 2, 4, 8 and 16
respectively. Fig.8 shows that the classification performance
will decay rapidly as network width decreases if we perform
only one or two sampling. It can be seen that the models
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Fig. 6. Mean of standard CNN and triangular CNN

trained with N= 4, 8 and 16 significantly outperform those
with N = 1 and 2. The classification accuracy starts to saturate
or even drop if N become relatively large (e.g., N = 16). N =
8 is the default through all our experiments.

As indicated in above Eq.2, there is a lower bound k0,
which plays an important role in controlling width. In order
to examine how the lower bound influences final classification
performance, we perform the evaluation on UCI-HAR dataset,
under four different width lower bounds as 0.0625, 0.125,
0.25, and 0.375. As illustrated in Fig.9 and Fig.10, it can
be observed that k0=0.125 has obviously better performance.
Compared with k0=0.0625, a smaller sampling interval is
usually enough to produce satisfactory accuracy. The results
indicate that the classification accuracy depends on the width
lower bound, it is totally feasible to sample width between
the interval [0.125, 1].

We further investigate the effectiveness of random width
sampling strategy. Four cases are evaluated: N random
widths without a minimum width and a maximum width;
N-1 random widths without a minimum width; N-1 random
widths without a maximum width; N-2 random widths with
a minimum width and a maximum width. As we can see,
the total number of sampling widths is set to N. In the

Fig. 7. Variances of standard CNN and triangular CNN

first case, the total N random widths need to be sampled
because both a minimum width and a maximum width are
not fixed. In the second or third case, only N-1 random
widths need to be sampled because either a minimum width
or a maximum width is already fixed. In the fourth case,
only N-2 random widths need to be sampled because two
widths, i.e., a minimum width and a maximum width are
already fixed. The evaluations are performed on UCI-HAR
dataset. Fig.11 and Fig.12 emonstrate that the models trained
with a minimum width and a maximum width perform better
than those without a minimum width and a maximum width.
In addition, the model trained with lower bound has higher

accuracy than that with upper bound, which indicates the
importance of lower bound k0. Thus, we train all models by
fixing lower bound and upper bound.

To verify the effectiveness of the proposed model on a
resource-constrained edge device, we deploy the flexible HAR
system into a Raspberry Pi 3B+ equipped with an official
supported Raspberry Pi operating system. It has a good
compatibility with the deep learning library PyTorch 1.7 used
in our experiments. The model is trained on WISDM dataset.
We run it on the embedded platform to read one sensor
sample and perform an online prediction. A Python program
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Fig. 8. The speed-accuracy trade-off curves at different sam-
pling number

Fig. 9. The speed-accuracy trade-off curves at different width
lower bounds

Fig. 10. Performance of different width lower bounds

is developed for the HAR application. Fig.13 illustrates the
graphical user interface (GUI) of the application, which is
able to tune network width, show prediction probability of
each activity and calculate inference time. We compare the
inference time at different widths e.g., 0.125, 0.5, and 1.0, and

Fig. 11. The speed-accuracy trade-off curves at different sam-
pling rules

Fig. 12. Performance of different sampling rules

Fig. 13. GUI of the HAR application on Raspberry Pi

Fig. 14. Experimental demonstration of application on Rasp-
berry Pi 3B+

results are shown in Table VI. As network width increases,
it takes around 52.901∼68.591ms, 101.434∼125.847ms and
147.261∼167.773ms respectively to predict one ten-second
window.

We further add the results of real experiments based on
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the proposed HAR system. For practical implementation,
we choose a 3-axis accelerometer(adxl345) as IMU and
communicate it with Raspberry Pi 3B+ via Inter-Integrated
Circuit(I2C). We configure Wi-Fi on the Raspberry Pi so
as to access it remotely via a laptop computer. As shown
in Fig. 14, following the experiment settings in WISDM
dataset, the IMU node is attached to the subjects front leg
pocket. The main functions are composed of two independent
threads process: ProcessSignals and OnlinePrediction. The
former is charge of communicating with Raspberry Pi and
periodically reads sensor signals, and then data normalized is
done by using the mean and standard deviation of training
data. The latter is charge of predicting activities. For the

TABLE VI
RASPBERRY PI’S INFERENCE TIME

Width Multiplier Time/ms
0.125 52.901∼68.591
0.50 101.434∼125.847
1.0 147.261∼167.773

Fig. 15. Inference time

WISDM case, a ten-second window with an 95% overlap
rate is slide over real sensor readings recorded from the IMU
node to generate one sample. Thus, the step length is equal
to 500ms, and the recognition system will wait for 500ms to
read and predict next sample. That is to say, OnlinePrediction
is triggered by scheduled interruptions every 500ms that
correspond to 5% of window length. We set three widths
to implement activity inference for 500 runs. The inference
times with different widths are shown in Fig.15. Overall,
the experimental results verify that the proposed method can
obtain an efficient speedup for activity inference at much
smaller memory footprint.

TABLE VII
TEST SET COLLECTED BY RASPBERRY PI

activity label number second
Downstairs 0 315 167

Jogging 1 634 327
Sitting 2 208 114

Standing 3 132 76
Upstairs 4 378 199
Walking 5 615 317

The measured values are collected from two subjects, and
the collection process is illustrated in Fig.14. Each subject
performs six types of activities: Walking, Jogging, Upstairs,
Downstairs, Sitting, and Standing. The embedded measuring
system still maintains a sampling rate of 20Hz, where a fixed-
length sliding window of 10 seconds and an 95% overlap
rate are used to segment raw sensor readings (i.e., 200 raw
accelerometer readings per sample). The measured sensor val-
ues need to be standardized into zero mean and unit variance.
Overall, the test set is composed of 2,282 samples, whose
statistics is shown in Table VII. To verify the effectiveness
of our model, we summarize our results of the embedded
measuring system in Fig.16. In order to show the predictive
accuracy associated with each of the activities done by the
system, we compute the confusion matrices that contains
information about actual and predicted activity classifications.
For example, in the case of the activity Jogging, the CNN
with width factor 1 makes 5 errors, while the CNNs with
width factor 0.5 and 0.125 make 6 and 9 errors respectively.
Similarly, for the activity Upstairs, the CNN with width factor
1 makes 45 errors, while the CNNs with width factor 0.5
and 0.125 misclassifies 58 and 77 samples respectively. The
results indicate that the classification performance only decays
slightly as the width factor decreases, which is in line with our
prior results.

V. CONCLUSION

Decent recent years, deep learning has achieved state-of-
the-art performance in sensor based HAR area. However, real
HAR applications are often deployed across different wearable
devices or hardware versions. Thus, an important issue is
how to maintain model flexibility for adapting quickly to new
computing platform, which has rarely been investigated so
far. In this paper, we propose an tunable width convolutional
neural network to perform activity recognition on resource-
constrained wearable devices. Specially, the network is stacked
by lower-triangular convolutional layers rather than normal
convolution to avoid the influence of varying batch statistics
caused by the switch between multiple widths. The lower-
triangular constrain is very suitable for tunable width net-
works. To acquire smooth control over width for the trade-off
between speed and accuracy, we perform random sampling
rather than fixed sampling over width, where the network at
different widths can be trained simultaneously as sub-networks
by accumulating their losses. Evaluation results validate the
practicability and effectiveness of the proposed HAR model,
compared with normal CNN.

At present, there are at least 24,000 Android devices, which
have drastically different computing resources. Even for the
same device, the inference speed also always varies due
to excessive consumption caused by background apps that
decreases the available computational budget. In addition, it
will take extra time and data for downloading and offloading
models when switching to a larger or smaller model. However,
at runtime prior networks need to be re-configured for adapting
across different devices for a given response time. This paper
attempts to handle this issue: For a given computational
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Fig. 16. Test performance on Raspberry Pi

budget, how to adaptively tradeoff accuracy and speed for
activity inference at runtime? We propose a tunable-width
neural network as a potential solution, which can be executed
at different widths. For brevity, the network may be easily
varied for a switch by tuning its width, i.e., the number of
channels alone. That is to say, we only need to change network
width without the need of redownloading or offloading new
models. Comparing to prior static networks, our method has
several advantages: (1) For different computational budget,
a single HAR model is trained. (2) A near-optimal trade-
off between accuracy and speed can be flexibly deployed on
a target device by adjusting network width accordingly. (3)
The solution is generally applicable to popular mainstream
building blocks of neural networks such as convolutions or
fully-connected layers, etc. Overall, it is easier to be deployed
on wearable or mobile devices with existing deep learning
libraries, which could be a better strategy to perform activity
inference without extra computational and memory cost. Our
research provides a new research direction for building flexible
models for activity inference on resource-constrained wearable
devices.
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